Valance Band Maximum and Thermoelectric Properties of Bi\(_2\)O\(_2\)Se: First-Principles Calculations
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/3/14958Keywords:
Bi2O2Se, band structure, primitive cell, valence band maximum, energy surface, thermoelectric, first-principles calculation.Abstract
Bi2O2Se has been known as a promising thermoelectric material with low thermal conductivity. Detail understanding of band structure is therefore important. In this report, by employing first-principles density functional theory and using primitive unit cell, the electronic band structure of Bi2O2Se is examined. The compound is found to be a narrow band gap semiconductor with very flat bands at the valence band maximum (VBM). Nevertheless, the curvature of energy surface at VBM is directional dependent. Overall, the heavy bands at VBM do not reduce drastically electrical conductivity. It is demonstrated by utilizing the solution of Boltzmann Transport Equation to compute the transport coefficients, i.e. the Seebeck coefficient, the electrical conductivity thereby the power factor and the electronic thermal conductivity. The figure of merit of the compound is also estimated and discussed. The p-type doping is suggested increasing the thermoelectric performance of the compound. All results are in good agreement with experiments and calculations reported earlier.Downloads
Metrics
References
J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H.Q. Xu, Y. Cui, H.Y. Hwang, Z. Liu, Y. Chen, B. Yan, H. Peng, Nat. Nanotechnol. 12 (2017) 530. DOI: https://doi.org/10.1038/nnano.2017.43
T. Quang, H. Lim, M. Kim, J. Korean Phys. Soc. 61 (2012) 1728. DOI: https://doi.org/10.3938/jkps.61.1728
S. V. Eremeev, Y.M. Koroteev, E. V. Chulkov, Phys. Rev. B 100 (2019) 115417. DOI: https://doi.org/10.1103/PhysRevB.100.115417
J. Liu, L. Tian, Y. Mou, W. Jia, L. Zhang, R. Liu, J. Alloys Compd. 764 (2018) 674. DOI: https://doi.org/10.1016/j.jallcom.2018.06.120
J.H. Song, H. Jin, A.J. Freeman, Phys. Rev. Lett. 105 (2010) 096403. DOI: https://doi.org/10.1103/PhysRevLett.105.053902
T. Van Quang, M. Kim, J. Appl. Phys. 120 (2016) 195105. DOI: https://doi.org/10.1063/1.4967989
H. Fu, J. Wu, H. Peng, B. Yan, Phys. Rev. B 97 (2018) 1. DOI: https://doi.org/10.1103/PhysRevD.97.081303
T. Van Quang, K. Miyoung, J. Korean Phys. Soc. 74 (2019) 256. DOI: https://doi.org/10.3938/jkps.74.256
T. Van Quang, M. Kim, J. Appl. Phys. 113 (2013) 17A934. DOI: https://doi.org/10.1063/1.4795743
T. Van Quang, M. Kim, IEEE Trans. Magn. 50 (2014) 1000904. DOI: https://doi.org/10.1109/TMAG.2013.2279854
P. Ruleova, T. Plechacek, J. Kasparova, M. Vlcek, L. Benes, P. Lostak, C. Drasar, J. Electron. Mater. 47 (2018) DOI: https://doi.org/10.1007/s11664-017-5952-4
P. Ruleova, C. Drasar, P. Lostak, C.P. Li, S. Ballikaya, C. Uher, Mater. Chem. Phys. 119 (2010) 299. DOI: https://doi.org/10.1016/j.matchemphys.2009.08.067
G.J. Snyder, E.S. Toberer, Nat. Mater. 7 (2008) 105–114. DOI: https://doi.org/10.1038/nmat2090
D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C 117 (2013) 21597.
L. Pan, L. Zhao, X. Zhang, C. Chen, P. Yao, C. Jiang, X. Shen, Y. Lyu, C. Lu, L.D. Zhao, Y. Wang, ACS Appl.
Mater. Interfaces 11 (2019) 21603. DOI: https://doi.org/10.1021/acsami.9b05470
M. Liangruksa, Mater. Res. Express 4 (2017) 035703. DOI: https://doi.org/10.1088/2053-1591/aa6095
X. Zhang, L.-D. Zhao, J. Mater. 1 (2015) 92. DOI: https://doi.org/10.1016/j.jmat.2015.01.001
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489
(2012) 414.
Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24 (2012) 6125. DOI: https://doi.org/10.1002/adma.201202919
G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93 (1996) 7436. DOI: https://doi.org/10.1073/pnas.93.15.7436
T. Van Quang, Commun. Phys. 28 (2018) 169. DOI: https://doi.org/10.1093/glycob/cwy018
T. Cheng, C. Tan, S. Zhang, T. Tu, H. Peng, Z. Liu, J. Phys. Chem. C 122 (2018) 19970. DOI: https://doi.org/10.1021/acs.jpcc.8b05475
Q.D. Gibson, M.S. Dyer, G.F.S. Whitehead, J. Alaria, M.J. Pitcher, H.J. Edwards, J.B. Claridge, M. Zanella, K.
Dawson, T.D. Manning, V.R. Dhanak, M.J. Rosseinsky, J. Am. Chem. Soc. 139 (2017) 15568. DOI: https://doi.org/10.1021/jacs.7b06168
W. Ku, T. Berlijn, C.C. Lee, Phys. Rev. Lett. 104 (2010) 216401. DOI: https://doi.org/10.1103/PhysRevLett.104.216401
T. Van Quang, M. Kim, J. Appl. Phys. 122 (2017) 245104. DOI: https://doi.org/10.1063/1.5006233
P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864. DOI: https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1134–A1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococ- cioni, I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, A. Smogunov, P. Umari, J. Phys. Condens. Matter 21 (2009) 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavaz- zoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Ku ̈cu ̈kbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H. V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Ponce ́, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 29 (2017) 465901. DOI: https://doi.org/10.1088/1361-648X/aa8f79
H. Monkhorst, J. Pack, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16 (1977) 1748. DOI: https://doi.org/10.1103/PhysRevB.16.1748
G.K.H. Madsen, J. Carrete, M.J. Verstraete, Comput. Phys. Commun. 231 (2018) 140–145. DOI: https://doi.org/10.1016/j.cpc.2018.05.010
G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67. DOI: https://doi.org/10.1016/j.cpc.2006.03.007
A. Kokalj, J. Mol. Graph. Model. 17 (1999) 176. DOI: https://doi.org/10.1016/S1093-3263(99)00028-5
C. Chen, M. Wang, J. Wu, H. Fu, H. Yang, Z. Tian, T. Tu, H. Peng, Y. Sun, X. Xu, J. Jiang, N.B.M. Schro ̈ter,
Y. Li, D. Pei, S. Liu, S.A. Ekahana, H. Yuan, J. Xue, G. Li, J. Jia, Z. Liu, B. Yan, H. Peng, Y. Chen, Sci. Adv. 4
(2018) 1.
A. Seidl, A. Go ̈rling, P. Vogl, J. Majewski, M. Levy, Phys. Rev. B 53 (1996) 3764. DOI: https://doi.org/10.1103/PhysRevB.53.3764
L. Pan, W. Di Liu, J.Y. Zhang, X.L. Shi, H. Gao, Q. feng Liu, X. Shen, C. Lu, Y.F. Wang, Z.G. Chen, Nano
Energy 69 (2020) 104394. DOI: https://doi.org/10.1016/j.nanoen.2019.104394
N. Wang, M. Li, H. Xiao, H. Gong, Z. Liu, X. Zu, L. Qiao, Phys. Chem. Chem. Phys. 21 (2019) 15097. DOI: https://doi.org/10.1039/C9CP02204J
D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C 117 (2013) 21597–21602. DOI: https://doi.org/10.1021/jp4080465
T. Van Quang, K. Miyoung, J. Korean Phys. Soc. 68 (2016) 393–397. DOI: https://doi.org/10.3938/jkps.68.393
M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, A.J. Freeman, Phys. Rev. B 81 (2010) 155211. DOI: https://doi.org/10.1103/PhysRevB.81.155211
A. L. J. Pereira, D. Santamar ́ıa-Pe ́rez, J. Ruiz-Fuertes, F.J. Manjo ́n, V.P. Cuenca-Gotor, R. Vilaplana, O. Gomis,
C. Popescu, A. Munoz, P. Rodr ́ıguez-Herna ́ndez, A. Segura, L. Gracia, A. Beltra ́n, P. Ruleova, C. Drasar, J.A. Sans, J. Phys. Chem. C 122 (2018) 8853. DOI: https://doi.org/10.1021/acs.jpcc.8b02194
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 08-06-2020
Published 22-07-2020