Valance Band Maximum and Thermoelectric Properties of Bi\(_2\)O\(_2\)Se: First-Principles Calculations

Van Quang Tran
Author affiliations

Authors

  • Van Quang Tran Department of Physics, University of Transport and Communications, Hanoi, Vietnam and Duy Tan University, K7/25 Quang Trung, Hai Chau, Da Nang, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/3/14958

Keywords:

Bi2O2Se, band structure, primitive cell, valence band maximum, energy surface, thermoelectric, first-principles calculation.

Abstract

Bi2O2Se has been known as a promising thermoelectric material with low thermal conductivity. Detail understanding of band structure is therefore important. In this report, by employing first-principles density functional theory and using primitive unit cell, the electronic band structure of Bi2O2Se is examined. The compound is found to be a narrow band gap semiconductor with very flat bands at the valence band maximum (VBM). Nevertheless, the curvature of energy surface at VBM is directional dependent. Overall, the heavy bands at VBM do not reduce drastically electrical conductivity. It is demonstrated by utilizing the solution of Boltzmann Transport Equation to compute the transport coefficients, i.e. the Seebeck coefficient, the electrical conductivity thereby the power factor and the electronic thermal conductivity. The figure of merit of the compound is also estimated and discussed. The p-type doping is suggested increasing the thermoelectric performance of the compound. All results are in good agreement with experiments and calculations reported earlier.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun, Z. Chen, W. Dang, C. Tan, Y. Liu, J. Yin, Y. Zhou, S. Huang, H.Q. Xu, Y. Cui, H.Y. Hwang, Z. Liu, Y. Chen, B. Yan, H. Peng, Nat. Nanotechnol. 12 (2017) 530. DOI: https://doi.org/10.1038/nnano.2017.43

T. Quang, H. Lim, M. Kim, J. Korean Phys. Soc. 61 (2012) 1728. DOI: https://doi.org/10.3938/jkps.61.1728

S. V. Eremeev, Y.M. Koroteev, E. V. Chulkov, Phys. Rev. B 100 (2019) 115417. DOI: https://doi.org/10.1103/PhysRevB.100.115417

J. Liu, L. Tian, Y. Mou, W. Jia, L. Zhang, R. Liu, J. Alloys Compd. 764 (2018) 674. DOI: https://doi.org/10.1016/j.jallcom.2018.06.120

J.H. Song, H. Jin, A.J. Freeman, Phys. Rev. Lett. 105 (2010) 096403. DOI: https://doi.org/10.1103/PhysRevLett.105.053902

T. Van Quang, M. Kim, J. Appl. Phys. 120 (2016) 195105. DOI: https://doi.org/10.1063/1.4967989

H. Fu, J. Wu, H. Peng, B. Yan, Phys. Rev. B 97 (2018) 1. DOI: https://doi.org/10.1103/PhysRevD.97.081303

T. Van Quang, K. Miyoung, J. Korean Phys. Soc. 74 (2019) 256. DOI: https://doi.org/10.3938/jkps.74.256

T. Van Quang, M. Kim, J. Appl. Phys. 113 (2013) 17A934. DOI: https://doi.org/10.1063/1.4795743

T. Van Quang, M. Kim, IEEE Trans. Magn. 50 (2014) 1000904. DOI: https://doi.org/10.1109/TMAG.2013.2279854

P. Ruleova, T. Plechacek, J. Kasparova, M. Vlcek, L. Benes, P. Lostak, C. Drasar, J. Electron. Mater. 47 (2018) DOI: https://doi.org/10.1007/s11664-017-5952-4

P. Ruleova, C. Drasar, P. Lostak, C.P. Li, S. Ballikaya, C. Uher, Mater. Chem. Phys. 119 (2010) 299. DOI: https://doi.org/10.1016/j.matchemphys.2009.08.067

G.J. Snyder, E.S. Toberer, Nat. Mater. 7 (2008) 105–114. DOI: https://doi.org/10.1038/nmat2090

D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C 117 (2013) 21597.

L. Pan, L. Zhao, X. Zhang, C. Chen, P. Yao, C. Jiang, X. Shen, Y. Lyu, C. Lu, L.D. Zhao, Y. Wang, ACS Appl.

Mater. Interfaces 11 (2019) 21603. DOI: https://doi.org/10.1021/acsami.9b05470

M. Liangruksa, Mater. Res. Express 4 (2017) 035703. DOI: https://doi.org/10.1088/2053-1591/aa6095

X. Zhang, L.-D. Zhao, J. Mater. 1 (2015) 92. DOI: https://doi.org/10.1016/j.jmat.2015.01.001

K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489

(2012) 414.

Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24 (2012) 6125. DOI: https://doi.org/10.1002/adma.201202919

G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93 (1996) 7436. DOI: https://doi.org/10.1073/pnas.93.15.7436

T. Van Quang, Commun. Phys. 28 (2018) 169. DOI: https://doi.org/10.1093/glycob/cwy018

T. Cheng, C. Tan, S. Zhang, T. Tu, H. Peng, Z. Liu, J. Phys. Chem. C 122 (2018) 19970. DOI: https://doi.org/10.1021/acs.jpcc.8b05475

Q.D. Gibson, M.S. Dyer, G.F.S. Whitehead, J. Alaria, M.J. Pitcher, H.J. Edwards, J.B. Claridge, M. Zanella, K.

Dawson, T.D. Manning, V.R. Dhanak, M.J. Rosseinsky, J. Am. Chem. Soc. 139 (2017) 15568. DOI: https://doi.org/10.1021/jacs.7b06168

W. Ku, T. Berlijn, C.C. Lee, Phys. Rev. Lett. 104 (2010) 216401. DOI: https://doi.org/10.1103/PhysRevLett.104.216401

T. Van Quang, M. Kim, J. Appl. Phys. 122 (2017) 245104. DOI: https://doi.org/10.1063/1.5006233

P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864. DOI: https://doi.org/10.1103/PhysRev.136.B864

W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1134–A1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococ- cioni, I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, A. Smogunov, P. Umari, J. Phys. Condens. Matter 21 (2009) 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavaz- zoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Ku ̈cu ̈kbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H. V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Ponce ́, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 29 (2017) 465901. DOI: https://doi.org/10.1088/1361-648X/aa8f79

H. Monkhorst, J. Pack, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

J.D. Pack, H.J. Monkhorst, Phys. Rev. B 16 (1977) 1748. DOI: https://doi.org/10.1103/PhysRevB.16.1748

G.K.H. Madsen, J. Carrete, M.J. Verstraete, Comput. Phys. Commun. 231 (2018) 140–145. DOI: https://doi.org/10.1016/j.cpc.2018.05.010

G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2006) 67. DOI: https://doi.org/10.1016/j.cpc.2006.03.007

A. Kokalj, J. Mol. Graph. Model. 17 (1999) 176. DOI: https://doi.org/10.1016/S1093-3263(99)00028-5

C. Chen, M. Wang, J. Wu, H. Fu, H. Yang, Z. Tian, T. Tu, H. Peng, Y. Sun, X. Xu, J. Jiang, N.B.M. Schro ̈ter,

Y. Li, D. Pei, S. Liu, S.A. Ekahana, H. Yuan, J. Xue, G. Li, J. Jia, Z. Liu, B. Yan, H. Peng, Y. Chen, Sci. Adv. 4

(2018) 1.

A. Seidl, A. Go ̈rling, P. Vogl, J. Majewski, M. Levy, Phys. Rev. B 53 (1996) 3764. DOI: https://doi.org/10.1103/PhysRevB.53.3764

L. Pan, W. Di Liu, J.Y. Zhang, X.L. Shi, H. Gao, Q. feng Liu, X. Shen, C. Lu, Y.F. Wang, Z.G. Chen, Nano

Energy 69 (2020) 104394. DOI: https://doi.org/10.1016/j.nanoen.2019.104394

N. Wang, M. Li, H. Xiao, H. Gong, Z. Liu, X. Zu, L. Qiao, Phys. Chem. Chem. Phys. 21 (2019) 15097. DOI: https://doi.org/10.1039/C9CP02204J

D. Guo, C. Hu, Y. Xi, K. Zhang, J. Phys. Chem. C 117 (2013) 21597–21602. DOI: https://doi.org/10.1021/jp4080465

T. Van Quang, K. Miyoung, J. Korean Phys. Soc. 68 (2016) 393–397. DOI: https://doi.org/10.3938/jkps.68.393

M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, A.J. Freeman, Phys. Rev. B 81 (2010) 155211. DOI: https://doi.org/10.1103/PhysRevB.81.155211

A. L. J. Pereira, D. Santamar ́ıa-Pe ́rez, J. Ruiz-Fuertes, F.J. Manjo ́n, V.P. Cuenca-Gotor, R. Vilaplana, O. Gomis,

C. Popescu, A. Munoz, P. Rodr ́ıguez-Herna ́ndez, A. Segura, L. Gracia, A. Beltra ́n, P. Ruleova, C. Drasar, J.A. Sans, J. Phys. Chem. C 122 (2018) 8853. DOI: https://doi.org/10.1021/acs.jpcc.8b02194

Downloads

Published

22-07-2020

How to Cite

[1]
V. Q. Tran, “Valance Band Maximum and Thermoelectric Properties of Bi\(_2\)O\(_2\)Se: First-Principles Calculations”, Comm. Phys., vol. 30, no. 3, p. 267, Jul. 2020.

Issue

Section

Papers
Received 05-04-2020
Accepted 08-06-2020
Published 22-07-2020