Unfolding Band and Absorption Energy Shift of \(\text{Si-Ge}\) Nano Crystals from First-principles Calculations
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/14942Keywords:
DFT-GGA, SiGe alloys, nanocrystals, unfolding bandAbstract
Physical properties of the Si\(_{1-x}\)Ge\(_{x}\) alloys ($x$ being the composition of Ge) can be understood and predicted from their electronic band structures. In this paper, electronic band structures of the Si\(_{1-x}\)Ge\(_{x}\) alloys are calculated using the first-principles density functional theory. The supper cell approach employed in our calculations leads to folding of electronic bands into the smaller Brillouin zone of the supercell, especially at the \(\Gamma\) point. This often leads to the misinterpretation that the materials have direct band gap. The problem can be resolved by an unfolding band technique which allows us to recover the primitive cell picture of band structure of Si\(_{1-x}\)Ge\(_{x}\). As a result, unfolded electronic bands correctly show an indirect band gap with the valence band maximum (VBM) at the $\Gamma $ point and the conduction band minimum (CBM) shifted away from \(\Gamma\). CBM is gradually shifted from a point along \(\Gamma X\) symmetry line (associated with Si) to the L point (associated with Ge) with the increased Ge composition \(x\) and the switching occurs at \(x\) in the range of 0.6\(\sim\)0.8 which is in accordance with the calculation using \textbf{\textit{kp}} method. Moreover, the additional electron pockets appear and develop at \(\Gamma\) and $L$. This provides more comprehensive understanding for our recent experimental observations on the shift of the absorption energy assigned to $E1$ direct transitions within \(L\) and \(\Gamma\) points in the Brillouin zone of Si\(_{1-x}\)Ge\(_{x}\) alloy nanocrystals.Downloads
Metrics
References
[1] S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.Y. Chen, H. Yeon, S. Yu and J. Kim, Nat. Mater. 17 (2018) 335. DOI: https://doi.org/10.1038/s41563-017-0001-5
[2] D. Vasilache, A. Cismaru, M. Dragoman, I. Stavarache, C. Palade, A.-M. Lepadatu and M.L. Ciurea, Phys. Status
Solidi A 2132 (2016) 255.
[3] F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Haenni, F.J. Haug, J. Persoz, J.W. Schuettauf, M. Stuckelberger, C. Ballif, Mater. Today 18 (2015) 378. DOI: https://doi.org/10.1016/j.mattod.2015.03.002
[4] M. Amato, M. Palummo, R. Rurali, S. Ossicini, E. Fondamentale, U. Paris-sud, A.P. Morselli and I.-R. Emilia,
Chem. Rev. 114 (2014) 1371. DOI: https://doi.org/10.1021/cr400261y
[5] X. Wang, H. Li, R. Camacho-aguilera, Y. Cai, L.C. Kimerling, J. Michel and J. Liu, Opt. Lett. 38 (2013) 652. DOI: https://doi.org/10.1364/OL.38.000652
[6] D.M. Paskiewicz, B. Tanto, D.E. Savage and M.G. Lagally, ACS Nano 5 (2011) 5814. DOI: https://doi.org/10.1021/nn201547k
[7] E.S. Zhukova, B.P. Gorshunov, V. a. Yuryev, L. V. Arapkina, K. V. Chizh, V. a. Chapnin, V.P. Kalinushkin, a. S.
Prokhorov and G.N. Mikhailova, JETP Lett. 92 (2010) 793. DOI: https://doi.org/10.1134/S0021364010240033
[8] E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, A.
Majumdar, C. Yu, B. L. Choi, J. M. Kim and K. Kim, Nano Lett. 12 (2012) 2918. DOI: https://doi.org/10.1021/nl300587u
[9] J. Li, Q. Xiang, R. Ze, M. Ma, S. Wang, Q. Xie and Y. Xiang, Appl. Therm. Eng. 134 (2018) 266. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.100
[10] C.P. Goyal, M. Omprakash, M. Navaneethan, T. Takeuchi, Y. Shimura, M. Shimomura, S. Ponnusamy, Y.
Hayakawa and H. Ikeda, J. Phys. Commun. 3 (2019) 075007. DOI: https://doi.org/10.1088/2399-6528/ab302f
[11] P. Logan and X. Peng, Phys. Rev. B 80 (2009) 115322. DOI: https://doi.org/10.1103/PhysRevB.80.115322
[12] T. Van Quang and M. Kim, J. Appl. Phys. 113 (2013) 17A934. DOI: https://doi.org/10.1063/1.4795743
[13] M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80 (1996) 2234. DOI: https://doi.org/10.1063/1.363052
[14] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof and R. Hajian, J. Nanomater. 2013 (2013) 328093. DOI: https://doi.org/10.1155/2013/328093
[15] N. T. Giang, L. T. Cong, N. D. Dung, T. Van Quang and N. N. Ha, J. Phys. Chem. Solids 93 (2016) 121. DOI: https://doi.org/10.1016/j.jpcs.2016.02.015
[16] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1134. DOI: https://doi.org/10.1103/PhysRev.140.A1133
[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni,
I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C.
Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, S. De Gironcoli,
S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N.
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, A. Smogunov and P. Umari,
J. Phys. Condens. Matter 21 (2009) 395502.
[18] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
[19] F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30 (1944) 244. DOI: https://doi.org/10.1073/pnas.30.9.244
[20] C. C. Lee, Y. Yamada-Takamura, T. Ozaki, J. Phys. Condens. Matter. 25 (2013) 345501. DOI: https://doi.org/10.1088/0953-8984/25/34/345501
[21] W. Ku, T. Berlijn and C. C. Lee, Phys. Rev. Lett. 104 (2010) 216401. DOI: https://doi.org/10.1103/PhysRevLett.104.216401
[22] P. V. C. Medeiros, S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 89 (2014) 041407(R). DOI: https://doi.org/10.1103/PhysRevB.89.041407
[23] P. V. C. Medeiros, S. S. Tsirkin and S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 91 (2015) 041116(R). DOI: https://doi.org/10.1103/PhysRevB.91.041116
[24] T. Van Quang, N.T. Giang, N.N. Ha, VNU J. Sci. Math. – Phys. 32 (2016) 57.
[25] P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79 (2009) 085104. DOI: https://doi.org/10.1103/PhysRevB.79.209902
[26] T. Quang, H. Lim and M. Kim, J. Korean Phys. Soc. 61 (2012) 1728. DOI: https://doi.org/10.3938/jkps.61.1728
[27] D. M. Bylander, L. Kleinman, Phys. Rev. B 41 (1990) 7868. DOI: https://doi.org/10.1103/PhysRevB.41.7868
[28] W. J. Elder, R. M. Ward, J. Zhang, Phys. Rev. B 83 (2011) 165210. DOI: https://doi.org/10.1103/PhysRevB.83.165210
[29] N. N. Ha, N. T. Giang, T. T. T. Thuy, N. N. Trung, N. D. Dung, S. Saeed and T. Gregorkiewicz, Nanotechnology
(2015) 375701
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 29-12-2020
Published 16-04-2021