Unfolding Band and Absorption Energy Shift of \(\text{Si-Ge}\) Nano Crystals from First-principles Calculations

Authors

  • Van Quang Tran University of Transportation and Communication, No.3 Cau Giay, Hanoi, Vietnam
  • Duong Tran Thi Thuy International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hanoi, Vietnam
  • Cong Le Thanh International Training Institute for Materials Science, Hanoi University of Science and Technology, No.~1 Dai Co Viet road, Hanoi, Vietnam
  • Ha Ngo Ngoc International Training Institute for Materials Science, Hanoi University of Science and Technology, No.~1 Dai Co Viet road, Hanoi, Vietnam
  • Nhung Nguyen Thi Thuy Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Hanoi, Vietnam
  • Viet Nguyen Huy Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cay Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/14942

Keywords:

DFT-GGA, SiGe alloys, nanocrystals, unfolding band

Abstract

Physical properties of the Si\(_{1-x}\)Ge\(_{x}\) alloys ($x$ being the composition of Ge) can be understood and predicted from their electronic band structures. In this paper, electronic band structures of the Si\(_{1-x}\)Ge\(_{x}\) alloys are calculated using the first-principles density functional theory. The supper cell approach employed in our calculations leads to folding of electronic bands into the smaller Brillouin zone of the supercell, especially at the \(\Gamma\) point. This often leads to the misinterpretation that the materials have direct band gap. The problem can be resolved by an unfolding band technique which allows us to recover the primitive cell picture of band structure of Si\(_{1-x}\)Ge\(_{x}\). As a result, unfolded electronic bands correctly show an indirect band gap with the valence band maximum (VBM) at the $\Gamma $ point and the conduction band minimum (CBM) shifted away from \(\Gamma\). CBM is gradually shifted from a point along \(\Gamma X\) symmetry line (associated with Si) to the L point (associated with Ge) with the increased Ge composition \(x\) and the switching occurs at \(x\) in the range of 0.6\(\sim\)0.8 which is in accordance with the calculation using \textbf{\textit{kp}} method. Moreover, the additional electron pockets appear and develop at \(\Gamma\) and $L$. This provides more comprehensive understanding for our recent experimental observations on the shift of the absorption energy assigned to $E1$ direct transitions within \(L\) and \(\Gamma\) points in the Brillouin zone of Si\(_{1-x}\)Ge\(_{x}\) alloy nanocrystals.

Downloads

Download data is not yet available.

References

[1] S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.Y. Chen, H. Yeon, S. Yu and J. Kim, Nat. Mater. 17 (2018) 335. DOI: https://doi.org/10.1038/s41563-017-0001-5

[2] D. Vasilache, A. Cismaru, M. Dragoman, I. Stavarache, C. Palade, A.-M. Lepadatu and M.L. Ciurea, Phys. Status

Solidi A 2132 (2016) 255.

[3] F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Haenni, F.J. Haug, J. Persoz, J.W. Schuettauf, M. Stuckelberger, C. Ballif, Mater. Today 18 (2015) 378. DOI: https://doi.org/10.1016/j.mattod.2015.03.002

[4] M. Amato, M. Palummo, R. Rurali, S. Ossicini, E. Fondamentale, U. Paris-sud, A.P. Morselli and I.-R. Emilia,

Chem. Rev. 114 (2014) 1371. DOI: https://doi.org/10.1021/cr400261y

[5] X. Wang, H. Li, R. Camacho-aguilera, Y. Cai, L.C. Kimerling, J. Michel and J. Liu, Opt. Lett. 38 (2013) 652. DOI: https://doi.org/10.1364/OL.38.000652

[6] D.M. Paskiewicz, B. Tanto, D.E. Savage and M.G. Lagally, ACS Nano 5 (2011) 5814. DOI: https://doi.org/10.1021/nn201547k

[7] E.S. Zhukova, B.P. Gorshunov, V. a. Yuryev, L. V. Arapkina, K. V. Chizh, V. a. Chapnin, V.P. Kalinushkin, a. S.

Prokhorov and G.N. Mikhailova, JETP Lett. 92 (2010) 793. DOI: https://doi.org/10.1134/S0021364010240033

[8] E.K. Lee, L. Yin, Y. Lee, J.W. Lee, S.J. Lee, J. Lee, S.N. Cha, D. Whang, G.S. Hwang, K. Hippalgaonkar, A.

Majumdar, C. Yu, B. L. Choi, J. M. Kim and K. Kim, Nano Lett. 12 (2012) 2918. DOI: https://doi.org/10.1021/nl300587u

[9] J. Li, Q. Xiang, R. Ze, M. Ma, S. Wang, Q. Xie and Y. Xiang, Appl. Therm. Eng. 134 (2018) 266. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.100

[10] C.P. Goyal, M. Omprakash, M. Navaneethan, T. Takeuchi, Y. Shimura, M. Shimomura, S. Ponnusamy, Y.

Hayakawa and H. Ikeda, J. Phys. Commun. 3 (2019) 075007. DOI: https://doi.org/10.1088/2399-6528/ab302f

[11] P. Logan and X. Peng, Phys. Rev. B 80 (2009) 115322. DOI: https://doi.org/10.1103/PhysRevB.80.115322

[12] T. Van Quang and M. Kim, J. Appl. Phys. 113 (2013) 17A934. DOI: https://doi.org/10.1063/1.4795743

[13] M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80 (1996) 2234. DOI: https://doi.org/10.1063/1.363052

[14] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof and R. Hajian, J. Nanomater. 2013 (2013) 328093. DOI: https://doi.org/10.1155/2013/328093

[15] N. T. Giang, L. T. Cong, N. D. Dung, T. Van Quang and N. N. Ha, J. Phys. Chem. Solids 93 (2016) 121. DOI: https://doi.org/10.1016/j.jpcs.2016.02.015

[16] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1134. DOI: https://doi.org/10.1103/PhysRev.140.A1133

[17] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni,

I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,

M. Lazzeri, L. Martin-samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C.

Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, S. De Gironcoli,

S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-samos, N.

Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, A. Smogunov and P. Umari,

J. Phys. Condens. Matter 21 (2009) 395502.

[18] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

[19] F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30 (1944) 244. DOI: https://doi.org/10.1073/pnas.30.9.244

[20] C. C. Lee, Y. Yamada-Takamura, T. Ozaki, J. Phys. Condens. Matter. 25 (2013) 345501. DOI: https://doi.org/10.1088/0953-8984/25/34/345501

[21] W. Ku, T. Berlijn and C. C. Lee, Phys. Rev. Lett. 104 (2010) 216401. DOI: https://doi.org/10.1103/PhysRevLett.104.216401

[22] P. V. C. Medeiros, S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 89 (2014) 041407(R). DOI: https://doi.org/10.1103/PhysRevB.89.041407

[23] P. V. C. Medeiros, S. S. Tsirkin and S. Stafstrom and J. Bj ¨ ork, ¨ Phys. Rev. B 91 (2015) 041116(R). DOI: https://doi.org/10.1103/PhysRevB.91.041116

[24] T. Van Quang, N.T. Giang, N.N. Ha, VNU J. Sci. Math. – Phys. 32 (2016) 57.

[25] P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79 (2009) 085104. DOI: https://doi.org/10.1103/PhysRevB.79.209902

[26] T. Quang, H. Lim and M. Kim, J. Korean Phys. Soc. 61 (2012) 1728. DOI: https://doi.org/10.3938/jkps.61.1728

[27] D. M. Bylander, L. Kleinman, Phys. Rev. B 41 (1990) 7868. DOI: https://doi.org/10.1103/PhysRevB.41.7868

[28] W. J. Elder, R. M. Ward, J. Zhang, Phys. Rev. B 83 (2011) 165210. DOI: https://doi.org/10.1103/PhysRevB.83.165210

[29] N. N. Ha, N. T. Giang, T. T. T. Thuy, N. N. Trung, N. D. Dung, S. Saeed and T. Gregorkiewicz, Nanotechnology

(2015) 375701

Downloads

Published

16-04-2021

How to Cite

Tran, V. Q., Tran Thi Thuy, D., Le Thanh, C., Ngo Ngoc, H., Nguyen Thi Thuy, N., & Nguyen Huy, V. (2021). Unfolding Band and Absorption Energy Shift of \(\text{Si-Ge}\) Nano Crystals from First-principles Calculations. Communications in Physics, 31(2). https://doi.org/10.15625/0868-3166/14942

Issue

Section

Papers