Facile Synthesis of CuO/ITO Film Via the Chronoamperometric Electrodeposition for Nonenzymatic Glucose Sensing
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/2/14801Keywords:
copper (II) oxide, glucose sensing, chronoamperometry, cyclic voltammetry, human serumAbstract
We report on the synthesis of copper (II) oxide (CuO)/indium tin oxide (ITO) electrode via the electrochemical deposition method using a CuSO4 solution and then thermal oxidation in air at temperature of 400 oC for 2 h. The crystalline structure and morphology of CuO were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The electrochemical properties of the CuO/ITO electrode to glucose in the alkaline medium of 0.1 M NaOH solution were investigated by cyclic voltammetry (CV) and Chronnoamperometry. The CuO-N/ITO electrode showed the best electrochemical properties for glucose detection in comparison to the others. Chronnoamperometry of CuO-N/ITO electrode to the glucose response showed excellent stability, the linear range of 1 mM to 3600 mM with high sensitivity of 283.6 mAcm-2mM-1 and 0.61 mM of the detection limit (S/N=3). A good response of the CuO-N/ITO electrode, which was investigated for different human serum samples, indicates a high potential of its towards a glucose sensor for analysis in real examples.
Downloads
Metrics
References
N.Q. Dung, D. Patil, T.T. Duong, H. Jung, D. Kim, S.G. Yoon, An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite, Sensors Actuators, B Chem. 166–167 (2012) 103–109. doi:10.1016/j.snb.2012.01.008. DOI: https://doi.org/10.1016/j.snb.2012.01.008
N. Quoc Dung, D. Patil, H. Jung, D. Kim, A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites, Biosens. Bioelectron. 42 (2013) 280–286. doi:10.1016/j.bios.2012.10.044. DOI: https://doi.org/10.1016/j.bios.2012.10.044
N.Q. Dung, D. Patil, H. Jung, J. Kim, D. Kim, NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing, Sensors Actuators, B Chem. 183 (2013) 381–387. doi:10.1016/j.snb.2013.04.018. DOI: https://doi.org/10.1016/j.snb.2013.04.018
N.Q. Dung, T.T.T. Duong, T.D. Lam, D.D. Dung, N.N. Huy, D. Van Thanh, A simple route for electrochemical glucose sensing using background current subtraction of cyclic voltammetry technique, J. Electroanal. Chem. (2019) 113323. doi:https://doi.org/10.1016/j.jelechem.2019.113323. DOI: https://doi.org/10.1016/j.jelechem.2019.113323
L.C. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. doi:10.1111/j.1749-6632.1962.tb13623.x. DOI: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, G. Padeletti, Third-generation biosensors based on TiO2 nanostructured films, Mater. Sci. Eng. C. 26 (2006) 947–951. DOI: https://doi.org/10.1016/j.msec.2005.09.080
K.M. El Khatib, R.M.A. Hameed, Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination, Biosens. Bioelectron. 26 (2011) 3542–3548. DOI: https://doi.org/10.1016/j.bios.2011.01.042
Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, L. Jin, ZnO nanorods/Au hybrid nanocomposites for glucose biosensor, Biosens. Bioelectron. 26 (2010) 275–278. DOI: https://doi.org/10.1016/j.bios.2010.06.006
B. Yuan, C. Wang, L. Li, S. Chen, Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography, Electrochem. Commun. 11 (2009) 1373–1376. DOI: https://doi.org/10.1016/j.elecom.2009.05.008
L.-C. Jiang, W.-D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron. 25 (2010) 1402–1407. DOI: https://doi.org/10.1016/j.bios.2009.10.038
X. Xiao, H. Li, Y. Pan, P. Si, Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids, Talanta. 125 (2014) 366–371. DOI: https://doi.org/10.1016/j.talanta.2014.03.030
S. Yang, G. Li, D. Wang, Z. Qiao, L. Qu, Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor, Sensors Actuators B Chem. 238 (2017) 588–595. DOI: https://doi.org/10.1016/j.snb.2016.07.105
D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, B. Qiu, Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene, Biosens. Bioelectron. 54 (2014) 273–278. DOI: https://doi.org/10.1016/j.bios.2013.11.005
M. Saraf, K. Natarajan, S.M. Mobin, Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO), Dalt. Trans. 45 (2016) 5833–5840. DOI: https://doi.org/10.1039/C6DT00670A
C.-Y. Chiang, K. Aroh, N. Franson, V.R. Satsangi, S. Dass, S. Ehrman, Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting–Part II. Photoelectrochemical study, Int. J. Hydrogen Energy. 36 (2011) 15519–15526. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.041
C.-Y. Chiang, Y. Shin, K. Aroh, S. Ehrman, Copper oxide photocathodes prepared by a solution based process, Int. J. Hydrogen Energy. 37 (2012) 8232–8239. DOI: https://doi.org/10.1016/j.ijhydene.2012.02.049
S.M. Cha, G. Nagaraju, S.C. Sekhar, J.S. Yu, A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte, J. Mater. Chem. A. 5 (2017) 2224–2234. DOI: https://doi.org/10.1039/C6TA10428B
C.R. Crick, I.P. Parkin, CVD of copper and copper oxide thin films via the in situ reduction of copper (ii) nitrate-a route to conformal superhydrophobic coatings, J. Mater. Chem. 21 (2011) 14712–14716. DOI: https://doi.org/10.1039/c1jm11955a
Z.-Y. Tian, H.J. Herrenbrück, P.M. Kouotou, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, Facile synthesis of catalytically active copper oxide from pulsed-spray evaporation CVD, Surf. Coatings Technol. 230 (2013) 33–38. DOI: https://doi.org/10.1016/j.surfcoat.2013.06.047
A. Kowalik-Klimczak, E. Stanisławek, J. Kacprzyńska-Gołacka, B. Kaźmierczak, P. Wieciński, The polyamide membranes modified by copper oxide using PVD techniques, J. Mach. Constr. Maintenance. Probl. Eksploat. (2018).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 21-04-2020
Published 26-05-2020