Quasi Three-parametric \(R\)-matrix and Quantum Supergroups \(GL_{p,q}(1/1)\) and \(U_{p,q}[\textit{gl}(1/1)]\)
Published 16-12-2019
Keywords
- Quantum supergroup,
- R-matrix,
- Drinfel'd-Jimbo deformation,
- Multi- parametric quantum deformation
How to Cite
Abstract
An overparametrized (three-parametric) R-matrix satisfying a graded Yang-Baxter equation is introduced. It turns out that such an overparametrization is very helpful. Indeed, this R-matrix with one of the parameters being auxiliary, thus, reducible to a two-parametric R-matrix, allows the construction of quantum supergroups GLp,q(1/1) and Up,q[gl(1/1)] which, respectively, are two-parametric deformations of the supergroup GL(1/1) and the universal enveloping algebra U[gl(1/1)]. These two-parametric quantum deformations GLpq(1/1) and Upq[gl(1/1)], to our knowledge, are constructed for the first time via the present approach. The quantum deformation Up,q[gl(1/1)] obtained here is a true two-parametric deformation of Drinfel’d-Jimbo’s type, unlike some other one obtained previously elsewhere.
Downloads
Metrics
References
- G. Aad et al. (ATLAS collaboration), Phys. Lett. B716, 1 (2012) [arXiv:1207.7214 [hep-ex]].
- S. Chatrchyan et al. (CMS collaboration), Phys. Lett. B716, 30 (2012) [arXiv:1207.7235 [hep-ex]].
- Nguyen Anh Ky and Nguyen Thi Hong Van, “Was the Higgs boson discovered?”, Commun. Phys. 25,
- (2015)[arXiv:1503.08630 [hep-ph]].
- Ho Kim Quang and Pham Xuan Yem, “Elementary particles and their interactions: concepts and
- phenomena”, Springer-Verlag, Berlin, 1998.
- S. Willenbrock, “Symmetries of the standard model”, hep-ph/0410370.
- M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
- L. Faddeev, N. Reshetikhin and L. Takhtajan, Algebra and Analys 1, 178 (1987).
- Yu. Manin, “Quantum groups and non-commutative geometry””, Centre des Recherchers
- Math ́ematiques, Montr ́eal, 1988.
- S. Gomez, M. Ruiz-Altaba and G, Sierra, “Quantum groups in two-dimensional physics”, Cambridge
- university press, Cambridge, 1996.
- V. Drinfel’d, “Quantum groups”, J. Sov. Math., 41, 898 (1988); Zap. Nauch. Semin. 155, 18 (1986);
- also in Proceedings of the International Congress of Mathematicians, Berkeley 1986, vol 1, The American
- Mathematical Society, Providence, RI, 1987, pp. 798 - 820.
- M. Jimbo, Lett. Math. Phys. 10, 63 (1985); ibit 11, 247 (1986).
- Yu. Manin, Commun. Math. Phys. 123, 169 (1989).
- P. Kulish and N. Reshetikhin, Lett. Math. Phys 18, 143 (1989).
- J. Schmidke, S. Volos and B. Zumino, Z. Phys. C 48, 249 (1990).
- M. Chaichian and P. Kulish, Phys. Lett. 234B, 72 (1990).
- N. Reshetikhin, Lett. Math. Phys. 20, 331 (1990).
- A. Schirrmacher, J. Wess and B. Zumino, Z. Phys. C 49, 317 (1991).
- L. Dabrowski and L.-y. Wang, Phys. Lett. 266B, 51 (1991).
- H. Hinrichsen and V. Rittenberg, Phys. Lett. 275B, 350 (1992) [hep-th/9110074].
- Nguyen Anh Ky, J. Phys. A 29, 1541 (1996) [math.QA/9909067].
- V. Dobrev and E. Tahri, Int. J. Mod. Phys. A 13, 4339 (1998).
- Nguyen Anh Ky, J. Math. Phys. 41, 6487 (2000) [math.QA/0005122].
- Nguyen Anh Ky, J. Phys. A 34, 7881 (2001) [math.QA/0104105].
- Naihong Hu1, Marc Rosso, Honglian Zhang1, Commun. Math. Phys. 278, 453 (2008).
- Yun Gao1, Naihong Hu, and Honglian Zhang, J. Math. Phys. 56, 011704 (2015).
- Naihuan Jing1 and Honglian Zhang, J. Math. Phys. 57, 091702 (2016).
- Nguyen Anh Ky and Nguyen Thi Hong Van, “A two-parametric deformation of U[sl(2)], its represen-
- tations and complex “spin””, math.QA/0506539.
- A. Kundu, Phys. Rev. Lett. 82, 3936 (1999).
- A Jellal, Mod. Phys. Lett. A 17, 701 (2002).
- A. Algin and B Deriven, J. Phys. A 38, 5945 (2005).
- Nguyen Anh Ky, J. Math. Phys. 35, 2583 (1994) [hep-th/9305183].
- Nguyen Anh Ky and N. Stoilova, J. Math. Phys. 36, 5979 (1995) [hep-th/9411098].