Propagation of waves in an incompressible rotating transversely isotropic nonlocal elastic solid

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0866-7136/15533

Keywords:

nonlocal elasticity, transverse isotropy, rotation, plane waves, Rayleigh wave

Abstract

In this paper, the nonlocal elasticity theory is applied to study the propagation of plane wave and Rayleigh-type surface wave in an incompressible, rotating and transversely isotropic material. The governing equations of motion for an incompressible, rotating, transversely isotropic and nonlocal elastic medium are specialized for a plane. The medium is assumed rotating about an axis perpendicular to the plane. The transverse isotropy axis is taken perpendicular to the surface. The specialized governing equations are first applied to derive a velocity equation for homogeneous plane wave. The specialized governing equations along with traction free boundary conditions are also applied to derive the secular equation governing the wave speed of Rayleigh wave.  The speeds of plane wave and Rayleigh wave are computed and illustrated graphically to observe the effects of nonlocality, rotation, anisotropy, frequency and propagation direction. It is noticed from the theory and numerical results that the speeds of both plane wave and Rayleigh wave decrease sharply with an increase in nonlocal parameter or rotation parameter. The speeds of plane wave and Rayleigh wave increase logarithmically with anisotropy material parameter. The feasible ranges of nonlocality, rotation or anisotropy parameters for the existence of plane wave or Rayleigh surface wave are determined for a given wave speed when the values of other parameters are fixed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. C. Eringen. Nonlocal continuum field theories. Springer Verlag, New York, (2001).

G. Z. Voyiadjis. Handbook of nonlocal continuum mechanics for materials and structures. Springer-Nature, Switzerland, (2019). DOI: https://doi.org/10.1007/978-3-319-58729-5

A. C. Eringen. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 10, (1972), pp. 425–435. DOI: https://doi.org/10.1016/0020-7225(72)90050-X

A. C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, (1983), pp. 4703–4710. DOI: https://doi.org/10.1063/1.332803

J. Peddieson, G. R. Buchanan, and R. P. McNitt. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41, (2003), pp. 305–312. DOI: https://doi.org/10.1016/S0020-7225(02)00210-0

L. J. Sudak. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. Journal of Applied Physics, 94, (2003), pp. 7281–7287. DOI: https://doi.org/10.1063/1.1625437

Y. Q. Zhang, G. R. Liu, and J. S. Wang. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 70, (2004). DOI: https://doi.org/10.1103/PhysRevB.70.205430

A. Sears and R. C. Batra. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B, 69, (2004). DOI: https://doi.org/10.1103/PhysRevB.69.235406

Q.Wang.Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 98, (2005). DOI: https://doi.org/10.1063/1.2141648

L. Wang and H. Hu. Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 71, (2005). DOI: https://doi.org/10.1103/PhysRevB.71.195412

G. Q. Xie, X. Han, and S. Y. Long. Effect of small size on dispersion characteristics of wave in carbon nanotubes. International Journal of Solids and Structures, 44, (2007), pp. 1242–1255. DOI: https://doi.org/10.1016/j.ijsolstr.2006.06.019

Q. Wang and C. M. Wang. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology, 18, (2007). DOI: https://doi.org/10.1088/0957-4484/18/7/075702

A. Tounsi, H. Heireche, H. M. Berrabah, A. Benzair, and L. Boumia. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. Journal of Applied Physics, 104, (2008). DOI: https://doi.org/10.1063/1.3018330

B. Arash and R. Ansari. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E: Low-dimensional Systems and Nanostructures, 42, (2010), pp. 2058–2064. DOI: https://doi.org/10.1016/j.physe.2010.03.028

Y. Liang and Q. Han. Prediction of nonlocal scale parameter for carbon nanotubes. Science China Physics, Mechanics and Astronomy, 55, (2012), pp. 1670–1678. DOI: https://doi.org/10.1007/s11433-012-4826-2

E. Ghavanloo and S. A. Fazelzadeh. Evaluation of nonlocal parameter for singlewalled carbon nanotubes with arbitrary chirality. Meccanica, 51, (2015), pp. 41–54. DOI: https://doi.org/10.1007/s11012-015-0195-z

S. Hemadi, S. E. Habibi, and P. Malekzadeh. Physically consistent nonlocal kernels for predicting vibrational characteristics of single walled carbon nanotubes. Materials Today Communications, 17, (2018), pp. 322–331. DOI: https://doi.org/10.1016/j.mtcomm.2018.09.020

M. Tuna and M. Kırca. Unification of Eringen’s nonlocal parameter through an optimizationbased approach. Mechanics of Advanced Materials and Structures, 28, (2019), pp. 839–848. DOI: https://doi.org/10.1080/15376494.2019.1601312

R. Ansari, S. Sahmani, and B. Arash. Nonlocal plate model for free vibrations of single-layered graphene sheets. Physics Letters A, 375, (2010), pp. 53–62. DOI: https://doi.org/10.1016/j.physleta.2010.10.028

L. Y. Huang, Q. Han, and Y. J. Liang. Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics. Nano, 07, (2012). DOI: https://doi.org/10.1142/S1793292012500336

S. H. Madani, M. H. Sabour, and M. Fadaee. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter. Journal of Molecular Graphics and Modelling, 79, (2018), pp. 264–272. DOI: https://doi.org/10.1016/j.jmgm.2017.11.008

S. K. Jalali. Does vibration amplitude influence the evaluation of nonlocal small scale parameter of single layered graphene sheets? Mechanics of Advanced Materials and Structures, 27, (2018), pp. 493–504. DOI: https://doi.org/10.1080/15376494.2018.1482035

B. Arash and Q. Wang. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 51, (2012), pp. 303–313. DOI: https://doi.org/10.1016/j.commatsci.2011.07.040

M. N. L. Narasimhan and B. M. McCay. Dispersion of surface waves in nonlocal dielectric fluids. Arch. Mech., 33, (3), (1981), pp. 385–400.

E. Inan and A. C. Eringen. Nonlocal theory of wave propagation in thermoelastic plates. International Journal of Engineering Science, 29, (1991), pp. 831–843. DOI: https://doi.org/10.1016/0020-7225(91)90005-N

L.-L. Ke, Y.-S. Wang, and Z.-D. Wang. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 94, (2012), pp. 2038–2047. DOI: https://doi.org/10.1016/j.compstruct.2012.01.023

A. Sapora, P. Cornetti, and A. Carpinteri. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach. Communications in Nonlinear Science and Numerical Simulation, 18, (2013), pp. 63–74. DOI: https://doi.org/10.1016/j.cnsns.2012.06.017

I. Roy, D. P. Acharya, and S. Acharya. Rayleigh wave in a rotating nonlocal magnetoelastic half-plane. Journal of Theoretical and Applied Mechanics, 45, (2015), pp. 61–78. DOI: https://doi.org/10.1515/jtam-2015-0024

L. Tong, Y. Yu, W. Hu, Y. Shi, and C. Xu. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory. Journal of Sound and Vibration, 379, (2016), pp. 106–118. DOI: https://doi.org/10.1016/j.jsv.2016.05.042

D. Singh, G. Kaur, and S. K. Tomar. Waves in nonlocal elastic solid with voids. Journal of Elasticity, 128, (2017), pp. 85–114. DOI: https://doi.org/10.1007/s10659-016-9618-x

G. Kaur, D. Singh, and S. K. Tomar. Rayleigh-type wave in a nonlocal elastic solid with voids. European Journal of Mechanics - A/Solids, 71, (2018), pp. 134–150. DOI: https://doi.org/10.1016/j.euromechsol.2018.03.015

L.-H. Ma, L.-L. Ke, Y.-Z. Wang, and Y.-S. Wang. Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. International Journal of Structural Stability and Dynamics, 18, (2018). DOI: https://doi.org/10.1142/S0219455418500608

D.-J. Yan, A.-L. Chen, Y.-S. Wang, C. Zhang, and M. Golub. Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites. European Journal of Mechanics - A/Solids, 66, (2017), pp. 158–167. DOI: https://doi.org/10.1016/j.euromechsol.2017.07.003

D. X. Tung. Dispersion equation of Rayleigh waves in transversely isotropic nonlocal piezoelastic solids half-space. Vietnam Journal of Mechanics, 41, (2019), pp. 363–371. DOI: https://doi.org/10.15625/0866-7136/14621

B. Singh. Rayleigh-type surface waves in a nonlocal thermoelastic solid half space with voids. Waves in Random and Complex Media, (2020), pp. 1–12. DOI: https://doi.org/10.1080/17455030.2020.1721612

L. Rayleigh. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, s1-17, (1885), pp. 4–11. DOI: https://doi.org/10.1112/plms/s1-17.1.4

R. M. White. Acoustic sensors for physical, chemical and biochemical applications. In Proceedings of IEEE International Frequency Control Symposium, (1998), pp. 587–594.

H. F. Tiersten, D. S. Stevens, and P. K. Das. Acoustic surface wave accelerometer and rotation rate sensor. In Proceedings of IEEE Ultrasonics Symposium, (1980), pp. 692–695. DOI: https://doi.org/10.1109/ULTSYM.1980.197488

H. F. Tiersten, D. S. Stevens, and P. K. Das. Circulating flexural wave rotation rate sensor. In Proceedings of IEEE Ultrasonics Symposium, (1981), pp. 163–166. DOI: https://doi.org/10.1109/ULTSYM.1981.197602

T. Wren and J. S. Burdess. Surface waves perturbed by rotation. Journal of Applied Mechanics, 54, (1987), pp. 464–466. DOI: https://doi.org/10.1115/1.3173043

M. Schoenberg and D. Censor. Elastic waves in rotating media. Quarterly of Applied Mathematics, 31, (1), (1973), pp. 115–125. DOI: https://doi.org/10.1090/qam/99708

J.-L. Auriault. Body wave propagation in rotating elastic media. Mechanics Research Communications, 31, (2004), pp. 21–27. DOI: https://doi.org/10.1016/j.mechrescom.2003.07.002

N. S. Clarke and J. S. Burdess. A rotation rate sensor based upon a Rayleigh resonator. Journal of Applied Mechanics, 61, (1994), pp. 139–143. DOI: https://doi.org/10.1115/1.2901388

N. S. Clarke and J. S. Burdess. Rayleigh waves on a rotating surface. Journal of Applied Mechanics, 61, (1994), pp. 724–726. DOI: https://doi.org/10.1115/1.2901524

H. Fang, J. Yang, and Q. Jiang. Rotation-perturbed surface acoustic waves propagating in piezoelectric crystals. International Journal of Solids and Structures, 37, (2000), pp. 4933–4947. DOI: https://doi.org/10.1016/S0020-7683(99)00198-5

M. Destrade. Rayleigh waves in anisotropic crystals rotating about the normal to a symmetry plane. Journal of Applied Mechanics, 71, (2004), pp. 516–520. DOI: https://doi.org/10.1115/1.1756140

M. Destrade. Surface acoustic waves in rotating orthorhombic crystals. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460, (2004), pp. 653–665. DOI: https://doi.org/10.1098/rspa.2003.1192

T. C. T. Ting. Surface waves in a rotating anisotropic elastic half-space. Wave Motion, 40, (2004), pp. 329–346. DOI: https://doi.org/10.1016/j.wavemoti.2003.10.005

R. W. Ogden and B. Singh. The effect of rotation and initial stress on the propagation of waves in a transversely isotropic elastic solid. Wave Motion, 51, (2014), pp. 1108–1126. DOI: https://doi.org/10.1016/j.wavemoti.2014.05.004

P. C. Vinh and T. T. T. Hue. Rayleigh waves with impedance boundary conditions in incompressible anisotropic half-spaces. International Journal of Engineering Science, 85, (2014), pp. 175–185. DOI: https://doi.org/10.1016/j.ijengsci.2014.08.002

B. Singh and B. Kaur. Propagation of Rayleigh waves in an incompressible rotating orthotropic elastic solid half-space with impedance boundary conditions. Journal of the Mechanical Behavior of Materials, 26, (2017), pp. 73–78. DOI: https://doi.org/10.1515/jmbm-2017-0016

B. Singh and B. Kaur. Rayleigh-type surface wave on a rotating orthotropic elastic half-space with impedance boundary conditions. Journal of Vibration and Control, 26, (2020), pp. 1980–1987. DOI: https://doi.org/10.1177/1077546320909972

R. W. Ogden and P. C. Vinh. On Rayleigh waves in incompressible orthotropic elastic solids. The Journal of the Acoustical Society of America, 115, (2004), pp. 530–533. DOI: https://doi.org/10.1121/1.1636464

Downloads

Published

30-07-2021

How to Cite

[1]
B. Singh, Propagation of waves in an incompressible rotating transversely isotropic nonlocal elastic solid, Vietnam J. Mech. 43 (2021) 237–252. DOI: https://doi.org/10.15625/0866-7136/15533.

Issue

Section

Research Article