Numerical investigation of force transmission in granular media using discrete element method
Author affiliations
DOI:
https://doi.org/10.15625/0866-7136/14787Keywords:
granular mechanics, discrete element method, force chain, compression testAbstract
In this paper, a numerical Discrete Element Method (DEM) model was calibrated to investigate the transmission of force in granular media. To this aim, DEM simulation was performed for reproducing the behavior of a given granular material under uniform compression. The DEM model was validated by comparing the obtained shear stress/normal stress ratio with results published in the available literature. The network of contact forces was then computed, showing the arrangement of the material microstructure under applied loading. The number and distribution of the contacts force were also examined statistically, showing that the macroscopic behavior of the granular medium highly depended on the force chain network. The DEM model could be useful in exploring the mechanical response of granular materials under different loadings and boundary conditions.
Downloads
References
P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique, 29, (1), (1979), pp. 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
V. T. Tran, F.-V. Donzé, and P. Marin. A discrete element model of concrete under high triaxial loading. Cement and Concrete Composites, 33, (9), (2011), pp. 936–948. https://doi.org/10.1016/j.cemconcomp.2011.01.003.
Z. Kaliniewicz and Z. Zuk. A relationship between friction plate roughness and the external friction angle of wheat kernels. International Journal of Food Properties, 20, (sup3), (2017), pp. S2409–S2417. https://doi.org/10.1080/10942912.2017.1371190.
N. T. Cuong, B. H. Ha, and R. Fukagawa. Failure mechanism of two-dimensional granular columns: Numerical simulation and experiments. Vietnam Journal of Mechanics, 37, (4), (2015), pp. 239–250. https://doi.org/10.15625/0866-7136/37/4/5844.
H. Fu, C. Jin, and J. Yu. The DEM-based digital design platform for agricultural machinery—AgriDEM. In International Conference on Discrete Element Methods, Springer, Springer, (2016), pp. 1253–1263.
J. Horabik and M. Molenda. Force and contact area of wheat grain in friction. Journal of Agricultural Engineering Research, 41, (1), (1988), pp. 33–42. https://doi.org/10.1016/0021-8634(88)90201-6.
E. P. Montellà, M. Toraldo, B. Chareyre, and L. Sibille. Localized fluidization in granular materials: Theoretical and numerical study. Physical Review E, 94, (5), (2016). https://doi.org/10.1103/physreve.94.052905.
D. T. Huan, T. H. Quoc, and T. M. Tu. Free vibration analysis of functionally graded shell panels with various geometric shapes in thermal environment. Vietnam Journal of Mechanics, 40, (3), (2018), pp. 199–215. https://doi.org/10.15625/0866-7136/10776.
F. Nicot, H. Xiong, A. Wautier, J. Lerbet, and F. Darve. Force chain collapse as grain column buckling in granular materials. Granular Matter, 19, (2), (2017). https://doi.org/10.1007/s10035-017-0702-0.
Y. Zhou, H. Wang, B. Zhou, and J. Li. DEM-aided direct shear testing of granular sands incorporating realistic particle shape. Granular Matter, 20, (3), (2018). https://doi.org/10.1007/s10035-018-0828-8.
Z. Deng, P. B. Umbanhowar, J. M. Ottino, and R. M. Lueptow. Continuum modelling of segregating tridisperse granular chute flow. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474, (2211), (2018). https://doi.org/10.1098/rspa.2017.0384.
S. Dunatunga and K. Kamrin. Continuum modelling and simulation of granular flows through their many phases. Journal of Fluid Mechanics, 779, (2015), pp. 483–513. https://doi.org/10.1017/jfm.2015.383.
S. Bidier and W. Ehlers. Particle simulation of granular media and homogenization towards continuum quantities. PAMM, 13, (1), (2013), pp. 575–576. https://doi.org/10.1002/pamm.201310269.
M. Tolomeo, V. Richefeu, G. Combe, J. N. Roux, and G. Viggiani. An assessment of discrete element approaches to infer intergranular forces from experiments on 2D granular media. International Journal of Solids and Structures, 187, (2020), pp. 48–57. https://doi.org/10.1016/j.ijsolstr.2019.01.010.
J. Duriez and R. Wan. Stress in wet granular media with interfaces via homogenization and discrete element approaches. Journal of Engineering Mechanics, 142, (12), (2016). https://doi.org/10.1061/(asce)em.1943-7889.0001163.
M. Servin, D. Wang, C. Lacoursière, and K. Bodin. Examining the smooth and nonsmooth discrete element approaches to granular matter. International Journal for Numerical Methods in Engineering, 97, (12), (2014), pp. 878–902. https://doi.org/10.1002/nme.4612.
S. Lommen, D. Schott, and G. Lodewijks. DEM speedup: Stiffness effects on behavior of bulk material. Particuology, 12, (2014), pp. 107–112. https://doi.org/10.1016/j.partic.2013.03.006.
V. D. Than, S. Khamseh, A. M. Tang, J.-M. Pereira, F. Chevoir, and J.-N. Roux. Basic mechanical properties of wet granular materials: a DEM study. Journal of Engineering Mechanics, 143, (1), (2017). https://doi.org/10.1061/(asce)em.1943-7889.0001043.
L. Xie, P. Jin, T.-C. Su, X. Li, and Z. Liang. Numerical simulation of uniaxial compression tests on layered rock specimens using the discrete element method. Computational Particle Mechanics, (2019), pp. 1–10. https://doi.org/10.1007/s40571-019-00307-3.
Z. Xu, A. M. Tartakovsky, and W. Pan. Discrete-element model for the interaction between ocean waves and sea ice. Physical Review E, 85, (1), (2012). https://doi.org/10.1103/physreve.85.016703.
M. Dratt and A. Katterfeld. Coupling of FEM and DEM simulations to consider dynamic deformations under particle load. Granular Matter, 19, (3), (2017). https://doi.org/10.1007/s10035-017-0728-3.
M. Zhou, S. Wang, S. Kuang, K. Luo, J. Fan, and A. Yu. CFD-DEM modelling of hydraulic conveying of solid particles in a vertical pipe. Powder Technology, 354, (2019), pp. 893–905. https://doi.org/10.1016/j.powtec.2019.07.015.
M. Kobayakawa, S. Miyai, T. Tsuji, and T. Tanaka. Interaction between dry granular materials and an inclined plate (comparison between large-scale DEM simulation and three-dimensional wedge model). Journal of Terramechanics, (2019). https://doi.org/10.1016/j.jterra.2019.08.006.
C. Gonzlez-Montellano, J. M. Fuentes, E. Ayuga-T´ellez, and F. Ayuga. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. Journal of Food Engineering, 111, (4), (2012), pp. 553–562. https://doi.org/10.1016/j.jfoodeng.2012.03.017.
A. O. Raji and J. F. Favier. Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation. Journal of Food Engineering, 64, (3), (2004), pp. 359–371. https://doi.org/10.1016/j.jfoodeng.2003.11.004.
V.-T. Nguyen and M.-Q. Le. Atomistic simulation of the uniaxial compression of black phosphorene nanotubes. Vietnam Journal of Mechanics, 40, (3), (2018), pp. 243–250. https://doi.org/10.15625/0866-7136/10982.
K. L. Johnson, K. Kendall, and a. Roberts. Surface energy and the contact of elastic solids. In Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, The Royal Society London, Vol. 324, (1971), pp. 301–313, https://doi.org/10.1098/rspa.1971.0141.
A. Di Renzo and F. P. Di Maio. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 59, (3), (2004), pp. 525–541. https://doi.org/10.1016/j.ces.2003.09.037.
K. F. Malone and B. H. Xu. Determination of contact parameters for discrete element method simulations of granular systems. Particuology, 6, (6), (2008), pp. 521–528. https://doi.org/10.1016/j.partic.2008.07.012.
J. Ai, J.-F. Chen, J. M. Rotter, and J. Y. Ooi. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 206, (3), (2011), pp. 269–282. https://doi.org/10.1016/j.powtec.2010.09.030.
J. M. Boac, R. P. K. Ambrose, M. E. Casada, R. G. Maghirang, and D. E. Maier. Applications of discrete element method in modeling of grain postharvest operations. Food Engineering Reviews, 6, (4), (2014), pp. 128–149. https://doi.org/10.1007/s12393-014-9090-y.
B. M. Ghodki, M. Patel, R. Namdeo, and G. Carpenter. Calibration of discrete element model parameters: soybeans. Computational Particle Mechanics, 6, (1), (2019), pp. 3–10. https://doi.org/10.1007/s40571-018-0194-7.
T. Xu, J. Yu, Y. Yu, and Y. Wang. A modelling and verification approach for soybean seed particles using the discrete element method. Advanced Powder Technology, 29, (12), (2018), pp. 3274–3290. https://doi.org/10.1016/j.apt.2018.09.006.
C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker. Models, algorithms and validation for opensource DEM and CFD–DEM. Progress in Computational Fluid Dynamics, an International Journal, 12, (2-3), (2012), pp. 140–152. https://doi.org/10.1504/pcfd.2012.047457.
J. Horabik and M. Molenda. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering, 147, (2016), pp. 206–225. https://doi.org/10.1016/j.biosystemseng.2016.02.017.
Matlab. Natick, MA, USA, (2018). The MathWorks.
U. Ayachit. The ParaView guide: A parallel visualization application, ParaView 4.3. Kitware, Incorporated, (2015).
D. O. C. Souza and F. C. Menegalli. Image analysis: Statistical study of particle size distribution and shape characterization. Powder Technology, 214, (1), (2011), pp. 57–63. https://doi.org/10.1016/j.powtec.2011.07.035.
C. J. Coetzee and D. N. J. Els. Calibration of granular material parameters for DEM modelling and numerical verification by blade–granular material interaction. Journal of Terramechanics, 46, (1), (2009), pp. 15–26. https://doi.org/10.1016/j.jterra.2008.12.004.
T. A. H. Simons, R. Weiler, S. Strege, S. Bensmann, M. Schilling, and A. Kwade. A ring shear tester as calibration experiment for DEM simulations in agitated mixers—a sensitivity study. Procedia Engineering, 102, (1), (2015), pp. 741–748. https://doi.org/10.1016/j.proeng.2015.01.178.
W.Wu, G. Ma,W. Zhou, D.Wang, and X. Chang. Force transmission and anisotropic characteristics of sheared granular materials with rolling resistance. Granular Matter, 21, (4), (2019). https://doi.org/10.1007/s10035-019-0938-y.
A. Salazar, E. Sáez, and G. Pardo. Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model. Computers and Geotechnics, 67, (2015), pp. 83–93. https://doi.org/10.1016/j.compgeo.2015.02.017.
A. Tordesillas, C. A. H. Steer, and D. M. Walker. Force chain and contact cycle evolution in a dense granular material under shallow penetration. Nonlinear Processes in Geophysics, 21, (2), (2014), pp. 505–519. https://doi.org/10.5194/npg-21-505-2014.
T.-X. Xiu, W. Wang, K. Liu, Z.-Y. Wang, and D.-Z. Wei. Characteristics of force chains in frictional interface during abrasive flow machining based on discrete element method. Advances in Manufacturing, 6, (4), (2018), pp. 355–375. https://doi.org/10.1007/s40436-018-0236-7.
W. Wang, W. Gu, and K. Liu. Force chain evolution and force characteristics of shearing granular media in Taylor-Couette geometry by DEM. Tribology Transactions, 58, (2), (2015), pp. 197–206. https://doi.org/10.1080/10402004.2014.943829.
L. Zhang, N. G. H. Nguyen, S. Lambert, F. Nicot, F. Prunier, and I. Djeran-Maigre. The role of force chains in granular materials: from statics to dynamics. European Journal of Environmental and Civil Engineering, 21, (7-8), (2017), pp. 874–895. https://doi.org/10.1080/19648189.2016.1194332.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.