Limit analysis of microstructures based on homogenization theory and the element-free Galerkin method

Canh V. Le, Phuc L. H. Ho
Author affiliations

Authors

  • Canh V. Le Department of Civil Engineering, International University, VNU-HCMC, Vietnam
  • Phuc L. H. Ho Department of Civil Engineering, International University, VNU-HCMC, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/14765

Keywords:

homogenization, limit analysis, second-order cone programming, Element-Free Galerkin method

Abstract

This paper presents a novel numerical formulation of computational homogenization analysis of materials at limit state. The fluctuating displacement field are approximated using the Element-Free Galerkin (EFG) meshless method. The estimated yield surface of materials can be determined by handling the multiscale (macro-micro) transition. Taking advantage of high-order EFG shape function and the second-order cone programming, the resulting optimization problem can be solved rapidly with the great accuracy. Several benchmark examples will be investigated to demonstrate the computational efficiency of proposed method.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

M. A. Save, C. E. Massonnet, and C. C. Massonnet. Plastic analysis and design of plates, shells and disks, Vol. 15. North-Holland, (1972).

J. Salenc¸on. Yield design. JohnWiley & Sons, (2013).

P. M. Squet. Local and global aspects in the mathematical theory of plasticity. Plasticity Today, (1985), pp. 279–309.

D. E. Buhan. A homogenization approach to the yield strength of composite materials. European Journal of Mechanics, A/Solids, 10, (2), (1991), pp. 129–154.

A. Taliercio. Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material. International Journal of Plasticity, 8, (6), (1992), pp. 741–762. https://doi.org/10.1016/0749-6419(92)90026-9. https://doi.org/10.1016/0749-6419(92)90026-9.">

A. Taliercio and P. Sagramoso. Uniaxial strength of polymeric-matrix fibrous composites predicted through a homogenization approach. International Journal of Solids and Structures, 32, (14), (1995), pp. 2095–2123. https://doi.org/10.1016/0020-7683(94)00139-n. https://doi.org/10.1016/0020-7683(94)00139-n.">

P. Francescato and J. Pastor. Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composites by limit analysis methods. European Journal of Mechanics-A/Solids, 16, (2), (1997), pp. 213–234.

D. Weichert, A. Hachemi, and F. Schwabe. Application of shakedown analysis to the plastic design of composites. Archive of Applied Mechanics, 69, (9-10), (1999), pp. 623–633. https://doi.org/10.1007/s004190050247. https://doi.org/10.1007/s004190050247.">

D.Weichert, A. Hachemi, and F. Schwabe. Shakedown analysis of composites. Mechanics Research Communications, 26, (1999), pp. 309–18. https://doi.org/10.1016/s0093-6413(99)00029-4. https://doi.org/10.1016/s0093-6413(99)00029-4.">

H. Zhang, Y. Liu, and B. Xu. Plastic limit analysis of ductile composite structures from micro-to macro-mechanical analysis. Acta Mechanica Solida Sinica, 22, (1), (2009), pp. 73–84. https://doi.org/10.1016/s0894-9166(09)60092-6. https://doi.org/10.1016/s0894-9166(09)60092-6.">

H. Li, Y. Liu, X. Feng, and Z. Cen. Limit analysis of ductile composites based on homogenization theory. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459, (2031), (2003), pp. 659–675. https://doi.org/10.1098/rspa.2002.1039. https://doi.org/10.1098/rspa.2002.1039.">

H. X. Li and H. S. Yu. Limit analysis of composite materials based on an ellipsoid yield criterion. International journal of plasticity, 22, (10), (2006), pp. 1962–1987. https://doi.org/10.1016/j.ijplas.2006.02.001. https://doi.org/10.1016/j.ijplas.2006.02.001.">

H. X. Li. Limit analysis of composite materials with anisotropic microstructures: A homogenization approach. Mechanics of Materials, 43, (10), (2011), pp. 574–585. https://doi.org/10.1016/j.mechmat.2011.06.007. https://doi.org/10.1016/j.mechmat.2011.06.007.">

H. X. Li. Microscopic limit analysis of cohesive-frictional composites with non-associated plastic flow. European Journal of Mechanics-A/Solids, 37, (2013), pp. 281–293. https://doi.org/10.1016/j.euromechsol.2012.07.005. https://doi.org/10.1016/j.euromechsol.2012.07.005.">

H. X. Li. A microscopic nonlinear programming approach to shakedown analysis of cohesive–frictional composites. Composites Part B: Engineering, 50, (2013), pp. 32–43. https://doi.org/10.1016/j.compositesb.2013.01.018. https://doi.org/10.1016/j.compositesb.2013.01.018.">

C. V. Le, P. H. Nguyen, H. Askes, and D. C. Pham. A computational homogenization approach for limit analysis of heterogeneous materials. International Journal for Numerical Methods in Engineering, 112, (10), (2017), pp. 1381–1401. https://doi.org/10.1002/nme.5561. https://doi.org/10.1002/nme.5561.">

J.-S. Chen, C.-T. Wu, S. Yoon, and Y. You. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 50, (2), (2001), pp. 435–466.

V. Carvelli, G. Maier, and A. Taliercio. Kinematic limit analysis of periodic heterogeneous media. CMES (Computer Modelling in Engineering & Sciences), 1, (2), (2000), pp. 19–30.

C. V. Le, M. Gilbert, and H. Askes. Limit analysis of plates using the EFG method and second-order cone programming. International Journal for Numerical Methods in Engineering, 78, (13), (2009), pp. 1532–1552. https://doi.org/10.1002/nme.2535. https://doi.org/10.1002/nme.2535.">

Downloads

Published

27-12-2020

How to Cite

[1]
C. V. Le and P. L. H. Ho, Limit analysis of microstructures based on homogenization theory and the element-free Galerkin method, Vietnam J. Mech. 42 (2020) 415–426. DOI: https://doi.org/10.15625/0866-7136/14765.

Issue

Section

Research Article