Improvement of in vitro shoot regeneration and flowering from petal explants of Begonia X hiemalis fotsch

Vu Quoc Luan, Duong Tan Nhut
Author affiliations

Authors

  • Vu Quoc Luan \(^1\) Taynguyen Institute for Scientific Research, VAST, Dalat, 670000, Vietnam https://orcid.org/0009-0004-7449-2826
  • Duong Tan Nhut \(^1\) Taynguyen Institute for Scientific Research, VAST, Dalat, 670000, Vietnam

DOI:

https://doi.org/10.15625/vjbt-17561

Keywords:

Begonia x hiemalis Fotsch, inflorescences, myo-inositol, petal explants, red-leaf

Abstract

Begonias hold significant importance due to their use as culinary plants, medicinal remedies, decorative elements, and high-value crops. This research aims to find new explant materials for regeneration shoots and direct flowering with high frequency. In this study, high-frequency shoot regeneration and in vitro flowering from petal explants of Begonia x hiemalis Fotsch were achieved. Whole petal explants disinfected with an AgNPs solution at 0.5 g/L for 15 min achieved the highest survival rate. The highest shoot regeneration rate reached 86.66%, with 65.33 shoots/explant from ½-petal explants. Direct formation of the flower consists of two different structural forms, including single petal clusters and complete flower buds, with the corresponding flower formation rates of 19.66 petals/explant; 0.53 flower buds/explant, respectively, at the keel of the petals on the MS medium supplemented with 1000 mg/L myo-inositol, 1.0 mg/L BA, 1.0 mg/L NAA, 30 g/L sucrose and 9.0 g/L agar. Interestingly, increasing the concentration of myo-inositol in the culture medium led to the appearance of red-leaf shoots at the highest rate (12.66 shoots/explant), reaching a maximum shoot height of 1.40 cm after 8 weeks of culture. After each subculture, the red color on leaves tended to decrease gradually, and they were in vitro flowered after the second subculture at a rate of 15% and the third subculture at a rate of 10% on medium supplemented with 40 mg/L adenine, 1.0 mg/L NAA, 1.0 mg/L BA, 30 g/L sucrose, 9 g/L agar and 1 g/L activated charcoal. The plantlets regenerated from petal cultures bloomed with standard red pigments, similar to those grown in natural growing conditions.

Downloads

Download data is not yet available.

References

Awal A, Abdul BAA, Rosna MT, Jamilah SY, Sadegh M (2013) Effect of adenine, sucrose and plant growth regulators on the indirect organogenesis and on in vitro flowering in Begonia x hiemalis Fotsch. Australian Journal of Crop Science 7(5): 691-698.

Awal A, Rosna MT, Nor AH (2008) Induction of somatic embryogenesis and plant regeneration in B. x hiemalis fotsch. in vitro. Journal of Biological Sciences 8: 920-924.

Awal A, Taha RM, Hasbullan NA (2010) Somatic embryogenesis in Begonia x hiemalis Fotsch. In vitro. Acta Hortic 829: 39-44.

Bellini C, Chupeau M, Gervais M, Vastra G, Chupeau Y (1990) Importance of myo-inositol, calcium, and ammonium for the viability and division of tomato (Lycopersicon esculentum) protoplasts. Plant Cell Tissue Org Cult 23: 27-37.

Chau NH, Bang LA, Buu NQ, Dung TTN, Ha HT, Quang DV (2008) Some results in manufacturing of nanosilver and investigation of its application for disinfection. Adv Nat Sci 9(2): 241-248.

Chebet DK, Okeno JA, Mathenge P (2003) Biotechnological approaches to improve horticultural crop production. Acta Hortic 625: 473-477. https://10.17660/ActaHortic.2003.625.56

Duncan DB (1955) Multiple range and multiple Ftests. Biometrics 11: 1-42. https://doi.org/10.2307/3001478

Erdelska O, Ovecˇka M (2004) Senescence of unfertilised flowers in Epiphyllum hybrids. Biol Plant 48: 381-388. https://doi.org/10.1023/B:BIOP.0000041090.36790.86

Espino FJ, Linacero R, Rueda J, Vazquez AM (2004) Shoot regeneration in four Begonia genotypes. Biol Plant 48(1): 101-104. https://doi.org/10.1023/B:BIOP.0000024282.01087.a3

Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151-158. https://doi.org/10.1016/0014-4827(68)90403-5

Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyls. Plant Sci 164: 259-265. https://doi.org/10.1016/S0168-9452(02)00408-9

Hu L, Zhou K, Li Y, Chen X, Liu B, Li C, Gong X, Ma F (2018) Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiol Biochem 133, 116-126. https://doi.org/10.1016/j.plaphy.2018.10.037

Hu L, Zhou K, Ren G, Yang S, Liu Y, Zhang Z, Li Y, Gong X, Ma F (2020) Myo-inositol mediates reactive oxygen species-induced programmed cell death via salicylic acid-dependent and ethylene-dependent pathways in apple. Hortic Res 7: 138. https://doi.org/10.1038/s41438-020-00357-2

Ismaini L, Lailaty IQ, Efendi M (2021) Micropropagation of three endemic begonias using various hormones concentration and culture media application. Jurnal Biodjati 6(2): 284-294. https://doi.org/10.15575/biodjati.v6i2.13769

Jesmin SN, Saha S, Hattori K (2007) High frequency shoot regeneration from petal explants of Chrysanthemum morifolium Ramat. in vitro. Pak J Biol Sci 10(19): 3356-3361. https://doi.org/10.3923/pjbs.2007.3356.3361

Kabirnataj S, Ghasemi Y, Nematzadeh G, Asgharzadeh R, Shahin KB, Yazdani M (2012) Effect of explant type and growth regulators on in vitro micropropagation of Begonia rex. Res. J Appl Basic Sci 3(4): 896-901.

Lai IL, Lin CW, Chen TW, Hu WH (2018) Micropropagation shortens the time to blooming of Begonia montaniformis x Begonia ningmigensis var. bella F1 Progeny. HortScience 53(12): 1855-1861. https://doi.org/10.21273/HORTSCI13376-18

Loewus and Murthy (2000) Myo-Inositol metabolism in plants. Plant Science 150(1): 1-19. https://doi.org/10.1016/S0168-9452(99)00150-8

Maria KW (2009) Organogenesis and somatic embryogenesis induced in petal cultures of Sedum species. Acta Biol Crac Ser Bot 51(1): 83-90.

Mazri MA, Meziani R, Fadile JE, Ezzinbi A (2016) Optimization of medium composition for in vitro shoot proliferation and growth of date palm cv. Mejhoul. 3 Biotech 6: 111. https://doi.org/10.1007/s13205-016-0430-x

Mendi YY, Curuk P, Kocaman E, Unek C, Eldogan S, Gencel G, Cetiner S (2009) Regeneration of begonia plantlets by direct organogenesis. Afr J Biotechnol 8(9): 1860-1863.

Michal OS (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants. Plant Science 177: 310-316. https://doi.org/10.1016/j.plantsci.2009.06.015

Mo VT, Cuong LK, Tung HT, Huynh, TV, Nghia LT, Khanh CM, Lam NN, Nhut DT (2020) Somatic embryogenesis and plantlet regeneration from the seaweed Kappaphycus striatus. Acta Physiol Plant 42: 104. https://doi.org/10.1007/s11738-020-03102-3

Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.

Nhut DT, Hai NT, Huyen PX, Huong DTQ, Hang NTT, Jaime ATDS (2005) Thidiazuron induces high frequency shoot bud formation from Begonia petiole transverse thin cell layer culture. Propag Ornam Plants 5(3): 149-155.

Nhut DT, Trinh DB, Cuong, DM, Tung HT, Huy NP, Hien VT, Luan VQ, Hien LTT, Chau NH (2018) Study on silver nanoparticles as a novel explant disinfectant for micropropagation of african violet (Saintpaulia ionantha H. Wendl.). Vietnam J Biotechnol 16(1): 87-97. https://doi.org/10.15625/1811-4989/16/1/9807

Pınar O, Seyhan U, Ufuk ÇA (2017) Metabolite production and antibacterial activities of callus cultures from Rosa damascena Mill. Petals. MARMARA Pharm J 21(3): 590-597. https://doi.org/10.12991/marupj.319331

Rezvanolsadat K, Amir M, Sepideh K, Masoud T (2014) In vitro regeneration of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars through organogenesis from petal explants. Int J Biosci 5(4): 76-81. http://dx.doi.org/10.12692/ijb/58.4.76-81

Schenk RU and Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199-204. https://doi.org/10.1139/b72-026

Sepehr MF, Ghorbanli M (2002) Effects of nutritional factors on the formation of Anthraquinones in callus cultures of Rheum ribes. Plant Cell Tissue Org Cult 68:171-175. https://doi.org/10.1023/A:1013837232047

Sharma N, Chaudhary C, Khurana P (2020) Role of myo‑inositol during skotomorphogenesis in Arabidopsis. Sci Rep 10: 173-29. https://doi.org/10.1038/s41598-020-73677-x

Snježana K, Anita M, Marijana B, Ivanka HJ (2011) Efficient plant regeneration of Begonia semper florens and Begonia spp. from petiole and leaf explants. J Food Agric Environ 9(2): 240-244.

Surinder K, and Jitender KK (2006) Regeneration ability of petiole, leaf and petal explants in gerbera cut flower cultures in vitro. Folia Horticulturae 18(2): 57-64.

Tan J, Wang C, Xiang B, Han R, Guo Z (2013) Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. Plant Cell Environ 36: 288-299. https://doi.org/10.1111/j.1365-3040.2012.02573.x

Tarrahi R and Rezanejad F (2013) Callogenesis and production of anthocyanin and chlorophyll in callus cultures of vegetative and floral explants in Rosa gallica and Rosa hybrida (Rosaceae). Turk J Bot 37: 1145-1154. https://doi.org/10.3906/bot-1205-42

Tung HT, Bao HG, Cuong DM, Ngan HTM, Hien VT, Luan, VQ, Vinh BVT, Phuong HTN, Nam NB, Trieu LN, Truong NK, Hoang PND, Nhut DT (2021) Silver nanoparticles as the sterilant in large-scale micropropagation of chrysanthemum. In Vitro Cell Dev Biol-Plant 58: 70-79. https://doi.org/10.1007/s11627-021-10163-7

Tung HT, Nam NB, Huy NP, Luan VQ, Hien VT, Phuong TTB, Le TD, Nhut DT (2018) A system for large scale production of Chrysanthemum using microponics with the supplement of silver nanoparticles under light-emitting diodes. Sci Hortic 232: 153-161. https://doi.org/10.1016/j.scienta.2017.12.063

Velasco FM, Rosas HG, Ana M, Castillo G, Elda AGA (2018) In vitro cultivation of petals of four varieties of Begonia elatior. Rev Mexicana cienc agric 9(6): 1207-1216. https://doi.org/10.29312/remexca.v9i6.1585

Vuylsteke D (1989) Shoot tip culture for the propagation, conservation and exchange of Musa germplasm. IBPGR 56.

Zhang C, Fu J, Wang Y, Gao S, Du D, Wu F (2015) Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’ cut flowers. Postharvest Biol Tec 101: 73-81. https://doi.org/10.1016/j.postharvbio.2014.11.009

Zhang YW, Yang CF, Gituru WR, Guo YH (2008) Within-season adjustment of sex expression in females and hermaphrodites of the clonal gynodioecious herb Glechoma longituba (Lamiaceae). Ecol Res 23: 873-881. https://doi.org/10.1007/s11284-007-0451-3

Zhao D, Tao J, (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6: 1-13. https://doi.org/10.3389/fpls.2015.00261

Downloads

Published

30-06-2024

How to Cite

Luan, V. Q., & Nhut, D. T. (2024). Improvement of <i>in vitro</i> shoot regeneration and flowering from petal explants of <i>Begonia X hiemalis</i> fotsch. Vietnam Journal of Biotechnology, 22(2), 329–340. https://doi.org/10.15625/vjbt-17561

Issue

Section

Articles

Funding data

Most read articles by the same author(s)

<< < 1 2 3 4 > >>