Characterization of kappa-carageenan from the red alga Kappaphycus striatum


  • Le Dinh Hung Nhatrang Institute of Technology Research and Application-Vietnam Academy of Science and Technology
  • Dang Thi Huong



Carrageenophytes, kappa-carrageenan, Kappaphycus striatum, properties, structure


The red alga Kappaphycus striatum is an economically important species and extensively cultivated in Vietnam as a material source for carrageenan production. To evaluate carrageenan quality, the characterization of carrageenan extracted from this alga was investigated. As a result, chemical composition of carrageenan consists of 32.4% of 3,6 anhydrogalactose and 24.3% of sulfate. Gelling and metling temperatures are 34.4oC and 55.6oC, respectively. Gel strength of 1.5% is 615 g/cm2 and average molecular weight is about 267 kDa. Furthermore, FT-IR spectrum showed intense absorption bands at 930 cm-1 and 850 cm-1 that attributed to 1,4-linked 3,6 anhydro-α-D-galactose and 1,3-linked β-D-galactose-4-sulfate of kappa-carrageenan, respectively. 13C NMR spectrum indicated the signals for anomeric carbon of β-D-galactose-4-sulfate at 102.6 ppm and anomeric carbon of 3,6-anhydro-α-D-galactose at 95.3 ppm. 13H NMR spectrum showed peak signals at 3.57 ppm and 5.1 ppm that corresponds with O-methyl proton of 1,3-linked 6-O-methyl-D-galactose and α-anomeric proton of 3,6 anhydro-α-D-galactose residues, respectively. The results show that the carrageenan from the red alga Kappaphycus striatus is kappa-carrageenan with the repeating disaccharide unit consisting of 1,3-linked 6-O-methylated, β-D-galactose-4-sulfate and 1,4-linked 3,6 anhydro-α-D-galactose and did not contain iota-carrageenan. Therefore, this alga may promise to be a good source for carrageenan production for application in food or medicine.


Download data is not yet available.

Author Biography

Le Dinh Hung, Nhatrang Institute of Technology Research and Application-Vietnam Academy of Science and Technology

Studies on structures, functions, and applications of lectins from marine algae, aiming at the developments of medicines (anticancer, antiviral agents), diagnosis of disease (probes for carbohydrates and cells), and healthy marine foods


Abad L, Saiki S, Nagasawa N, Kudo H, Katsumura Y, Dela Rosa A (2011) NMR analysis of fractionated irradiated -carrageenan oligomers as plant growth promoter. Rad Physics Chem 80: 977–982.

Aguilan J, Broom J, Hemmingson J, Dayrit F, Montano N, Dancel M (2003) Structural analysis of carrageenan from farmed varieties of Philippine seaweed. Bot Mar 46: 179–192.

Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2: 671–680.

Caceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zuniga EA (2000) Carrageenans from chilean samples of Stenogramme Interrupta (Phyllophoraceae): Structural analysis and biological activity. Phytochem 53: 81–86.

Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: Biological properties, chemical modifications and structural analysis - A Review. Carbohydr Polym 77: 167-180.

Chen Y, Liao ML, Dunstan DE (2002) The rheology of K+-κ-carrageenan as a weak gel. Carbohydr Polym 50: 109–116.

Dai WG, Dong LC, Song YQ (2007) Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 342: 201–207.

Estevez JM, Ciancia M, Cerezo AS (2000) The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii. Carbohydr Res 325: 287–299.

Girond S, Crance JM, Van Cuyck-Gandre H, Renaudet J, Deloince R (1991) Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol 142: 261–270.

Hayashi L, Paula EJD, Chow F (2007) Growth rate and carrageenan analyses in four strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales) farmed in the subtropical waters of São Paulo State, Brazil. J Appl Phycol 19: 393–399.

Hellebust JA, Craige JS (1978) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, London pp: 110–131.

Hoffman AS (2002) Hydrogels for Biomedical Applications Adv. Drug Deliv Rev 43: 3–12.

Hurtado AQ, Gerung GS, Yasir S, Critchley AT (2014) Cultivation of tropical red seaweeds in the BIMP-EAGA region. J Appl Phycol 26: 707–718.

Kolender A, Matulewicz M (2004) Desulfation of sulfated galactans with chlorotrimethylsilane. Charaterization of B-carrageenan by 1H NMR spectroscopy. Carbohydr Res 339: 1619–1629.

Lahaye M, Yaphe W, Viet MTP, Rochas C (1989) 13C NMR spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr Res 190: 249–265.

Le Dinh Hung, Hori K, Huynh Quang Nang, Tran Kha, Le Thi Hoa (2009) Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. J Appl Phycol 21: 265-272.

Le Dinh Hung, Sato Y, Hori K (2011) High-mannose N-glycan-specific lectins from the red alga Kappaphycus striatum (Carrageenophyte). Phytochem 72: 855-861.

Le Dinh Hung, Hirayama M, Bui Minh Ly, Hori K (2015) Biological activity, cDNA cloning and primary structure of lectin KSA-2 from the cultivated red alga Kappaphycus striatum (Schmitz) Doty ex Silva. Phytochem Let 14: 99-105.

Le Dinh Hung, Le Thi Hoa, Le Nhu Hau, Dinh Thanh (2019) The lectin accumulation, growth rate, carrageenan yield, and quality from the red alga Kappaphycus striatus cultivated at Camranh Bay, Vietnam. J Appl Phycol 31: 1991-1998.

Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103: 1–11.

Liang W, Mao X, Peng X, Tang S (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101: 776–785.

Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects.

Carbohydr Polym 121: 27–36.

Mahmood WAK, Khan MMR, Yee TC (2014) Effects of reaction temperature on the synthesis and thermal properties of carrageenan ester. J Phys Sci 25: 123–138.

Makino K, Idenuma R, Murakami T, Ohshima H (2001) Design of a rate- and time-programming drug release device using a hydrogel: Pulsatile drug release from κ-carrageenan hydrogel device by surface erosion of the hydrogel. Colloids Surf. B:

Biointerfaces 20: 355–359.

Mendoza WC, Montano NE, Ganzon-Fortes ET, Villanueva RD (2002) Chemical and gelling profile of ice-ice infected carrageenan from Kappaphycus striatum (Schmitz) Doty “sacol” strain (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 14: 409–418.

Nanaki S, Karavas E, Kalantzi L, Bikiaris D (2010) Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym 79: 1157–1167.

Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58: 187–205.

Ohno M, Largo DB, Ikumoto T (1994) Growth rate, carrageenan yield and gel properties of cultured kappa-carrageenan producing red alga Kappaphycus alvarezii (Doty) Doty in the subtropical waters of Shikoku, Japan. J Appl Phycol 6: 1–5.

Pal S, Sen G, Mishra S, Dey RK, Jha U (2008) Carboxymethyl tamarind: Synthesis, characterization and its application as novel drug-delivery agent. J Appl Polym Sci 110: 392–400

Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asi Pac J Clin Nutr 12: 209-214.

Prajapati DV, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105: 97–112.

Pavli M, Baumgartner S, Kos P, Kogej K (2011) Doxazosin-carrageenan interactions: A novel approach for studying drug-polymer interactions and relation to controlled drug release. Int J Pharm 421: 110–119.

Roberts M, Quemener B (1999) Measurement of carrageenans in food: Challenges, progress and trends in analysis. Trends in Food Sci Technol 10: 169–181.

Santos GA (1989) Carrageenans of species of Eucheuma J. Agardh and Kappaphycus Doty (Solieriaceae, Rhodophyta). Aquat Bot 36: 55–67.

Silva DA, Paula R, Feitosa J, Brito A, Maciel J, Paula H (2004) Carboxymethylation of cashew tree exudate polysacharide. Carbohydr Polym 58: 163–171.

Terho TT, Hartiala K (1972) Method for determination of sujphate content of glycosaminoglycans. Anal Biochem 41: 471-476.

Thanh Thi Thu Thuy, Tran Thị Thanh Van, Bui Minh Ly, Pham Duc Thinh (2007) Structure of carrageenan from Eucheuma denticulatum. Tuyển tập Báo cáo Hội nghị Quốc gia "Biển Đông-2007": 207-212.

Tranquilan-Aranilla C, Nagasawa N, Bayquen A, Rosa AD (2012) Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohydr Polym 87: 1810–1816.

Turquois T, Ascquistapace S, Vera FA, Welti DH (1996) Composition of carrageenan blends inferred from 13C-NMR and infrared spectroscopic analysis. Carbohydr Polym 31: 269–278.

Usov AI, Shashkov AS (1985) Polysaccharides of algae. 34. Detection of iota-carrageenan in Phyllophora brodiaei (Turn.) J.Ag. (Rhodophyta) using 13C-NMR spectroscopy. Bot Mar 28: 367–373.

Velde F, Pereirac L, Rollema HS (2004) The revised NMR chemical shift data of carrageenans. Carbohydr Res 339: 2309–2313.

Vreeman HJ, Snoeren THM, Payens TAJ (1980) Physicochemical investigation of k-carrageenan in the random state. Biopolym 19: 1357–1374.

Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13: 143–148.

Yuan H, Song J, Zhang W, Li X, Li N, Gao X (2006) Antioxidant activity and cytoprotective effect of kappa-carrageenan oligosaccharides and their different derivatives. Bioorg Med Chem Lett 16: 1329–1334.

Zhang QB, Yu PZ, Li ZE, Zhang H, Xu ZH, Li PC (2003), Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanensis. J Appl Phycol 15: 305–310.

Zhang QB, Li N, Liu XG, Zhao ZQ, Li ZE, Xu ZH (2004) The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr Res 339: 105–111.

Zhou G F, Sun YP, Xin H, Zhang Y, Li Z, Xu ZH (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharm Res 50: 47–53.

Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96: 282–301.

Zuldin WH, Yassir S, Shapawi R (2016) Growth and biochemical composition of Kappaphycus (Rhodophyta) in customized tank culture system. J Appl Phycol 28: 2453–2458.




How to Cite

Hung, L. D., & Thi Huong, D. (2020). Characterization of kappa-carageenan from the red alga Kappaphycus striatum. Vietnam Journal of Biotechnology, 18(2), 321–329.