Profile of the gut microbial composition in Apis mellifera larvae collected in Ha Noi

Dong Van Quyen, Bui Thi Thuy Duong, Pham Thi Lanh, Nguyen Thi Hoa, Nguyen Quang Huy, Ha Thi Thu, Pham Hong Thai
Author affiliations


  • Dong Van Quyen Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Bui Thi Thuy Duong Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Pham Thi Lanh Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Nguyen Thi Hoa Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Nguyen Quang Huy University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Ha Thi Thu Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Pham Hong Thai Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Ha Noi, Vietnam



Apis mellifera, honeybees, Lactobacillus, larvae, microbiome.


The gut microbiota plays a crucial role in food digestion, enhances the host's immune system, and against pathogens. Numerous studies have been conducted on the microbiota of insects in general and honeybees in particular. However, studies have primarily focused on adult honeybees, with fewer studies dedicated to larvae. Despite being within the hive, honeybee larvae still possess their distinct microbiota. To gain a deeper understanding of the microbiota in the larvae of Apis mellifera honeybees, the larva from honeybee colonies collected in Ha Noi, Vietnam was investigated. Next-generation sequencing (NGS) targeting the 16S rRNA gene was employed for microbiome analysis. Results revealed the presence of 5 phyla including Proteobacteria (70.43%), Actinobacteria (1.16%), Firmicutes (20.87%), Bacteroidetes (2.72%), and Chloroflexi (2%). Representative genera included Bombella (29.97%), Lactobacillus (14.91%), Gilliamella (9.59%), Frischella (4.69%), Snodgrassella (3.85%), and Marinobacter (1.21%). Further characterized species composition in the sample we identified the prevalence of Bifidobacterium intestini (29.96%), Gilliamella apicola (8.08%), Frischella perrara (4.55%), Lactobacillus kimbladii (2.85%), Lactobacillus plantarum (2.80%), Snodgrassella alvi (2.77%), Lactobacillus mellis (2.59%), Lactobacillus_uc (unclassified or not yet classified to species, 2.19%), Lactobacillus kunkeei (1.43%), and Lactobacillus melliventris (1.31%). Understanding these microbial dynamics is crucial for developing strategies to support honeybee health and mitigate the challenges posed by factors, such as pesticides, environmental pollution, and honeybee diseases.


Download data is not yet available.


Metrics Loading ...


Biová J., Charrière J. D., Dostálková S., Škrabišová M., Petřivalský M., Bzdil J. & Danihlík J., 2021. Melissococcus plutonius Can be effectively and economically detected using hive debris and conventional PCR. Insects, 12(2): 150.

Crotti E., Rizzi A., Chouaia B., Ricci I., Favia G., Alma A. & Daffonchio D., 2010. Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology, 76(21): 6963−6970.

Duong B. T. T., Lien N. T. K., Thu H. T., Hoa N. T., Lanh P. T., Yun B. R., ... & Van Quyen D., 2020. Investigation of the gut microbiome of Apis cerana honeybees from Vietnam. Biotechnology Letters, 42: 2309−2317.

Edgar R. C., Haas B. J., Clemente J. C., Quince C., & Knight R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194−2200.

El-Seedi H. R., Ahmed H. R., El-Wahed A. A. A., Saeed A., Algethami A. F., Attia N. F., & Wang K., 2022. Bee stressors from an immunological perspective and strategies to improve bee health. Veterinary Sciences, 9(5): 199.

Fu L., Niu B., Zhu Z., Wu S., & Li W., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152.

Härer L., Hilgarth M., & Ehrmann M. A., 2022. Comparative genomics of acetic acid bacteria within the genus Bombella in light of beehive habitat adaptation. Microorganisms, 10(5): 1058.

Hoover S. E., & Ovinge L. P., 2018. Pollen collection, honey production, and pollination services: managing honey bees in an agricultural setting. Journal of economic Entomology, 111(4): 1509−1516.

Iorizzo M., Letizia F., Ganassi S., Testa B., Petrarca S., Albanese G., & De Cristofaro A., 2022. Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects, 13(3): 308.

Kogut M. H., Lee A., & Santin E., 2020. Microbiome and pathogen interaction with the immune system. Poultry science, 99(4): 1906−1913.

Lanh P. T., Duong B. T. T., Thu H. T., Hoa N. T., Yoo M. S., Cho Y. S., & Quyen D. V., 2022. The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health. Microorganisms, 10(10): 1938.

Li L., Praet J., Borremans W., Nunes O. C., Manaia C. M., Cleenwerck I., & Vandamme P., 2015. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_1): 267−273.

Motta E. V. S., Powell J. E., Leonard S. P., Moran N. A., 2022., Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci., 377(1853): 20210156.

Myers E. W., & Miller W., 1988. Optimal alignments in linear space. Bioinformatics, 4(1): 11−17.

Nanetti A., Bortolotti L., & Cilia G., 2021. Pathogens spillover from honey bees to other arthropods. Pathogens, 10(8): 1044.

Ramos O. Y., Basualdo M., Libonatti C., & Vega M. F., 2020. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. Journal of Applied Microbiology, 128(5): 1248−1260.

Schmickl T., & Karsai I., 2017. Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging. PloS One, 12(11): e0188004.

Schmidt K., Santos-Matos G., Leopold-Messer S., El Chazli Y., Emery O., Steiner T., ... & Engel P., 2023. Integration host factor regulates colonization factors in the bee gut symbiont Frischella perrara. Elife, 12: e76182.

Sengupta R., Altermann E., Anderson R. C., McNabb W. C., Moughan P. J., & Roy N. C., 2013. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators of Inflammation, 2013: 237921.

Smutin D., Lebedev E., Selitskiy M., Panyushev N., & Adonin L., 2022. Micro” bee” ota: honey bee normal microbiota as a part of superorganism. Microorganisms, 10(12): 2359.

Thukral A. K., 2017. A review on measurement of Alpha diversity in biology. Agricultural Research Journal, 54(1): 1−10.

Yu L., Yang H., Cheng F., Wu Z., Huang Q., He X., ... & Wu X., 2021. Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress. Environmental Pollution, 290: 118107.

Zhang Z., Mu X., Shi Y., Zheng H. J. M. S., 2022. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes. Microbiology Spectrum, 10(2): e02438–02421.

Zheng H., Steele M. I., Leonard S. P., Motta E. V., & Moran N. A., 2018. Honey bees as models for gut microbiota research. Lab Animal, 47(11): 317−325.




How to Cite

Dong, V. Q., Bui Thi , T. D., Pham, T. L., Nguyen, T. H., Nguyen, Q. H., Ha, T. T., & Pham, H. T. (2024). Profile of the gut microbial composition in <i>Apis mellifera</i> larvae collected in Ha Noi. Academia Journal of Biology, 46(2), 63–70.