Isolation and characterization of Escherichia coli associated with diarrhea in chickens and ducks in Hai Phong province

Dong Van Quyen, Pham Thi Lanh, Nguyen Kim Oanh
Author affiliations

Authors

  • Dong Van Quyen Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam; Gradute university of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Pham Thi Lanh Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Nguyen Kim Oanh Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/20228

Keywords:

16S rRNA, colibacillosis, Escherichia coli, hemolytic activity, MALDI-TOF.

Abstract

Colibacillosis is an intestinal tract infection in poultry caused by Escherichia coli. It is one of the leading causes of mortality and results in significant economic losses for the poultry farming sector due to its high incidence rate. Recently, E. coli has been considered a predominant bacterial pathogen that is responsible for diarrhea and bloodstream infections in chickens and ducks in Vietnam. In this study, E. coli strains associated with diarrhea were isolated from chicken and duck feces and intestines collected from poultry farms in Hai Phong province using a Macconkey selective medium. The obtained isolates were initially identified by the MALDI-TOF MS method, screened for hemolytic activity, and finally identified by 16S rRNA gene sequencing. As a result, eight E. coli strains exhibiting hemolytic activity were identified. Among them, E. coli_5, E. coli_6, and E. coli_8 strains were clustered with E. coli O78:H51, whereas E. coli_3 was grouped with E. coli O78:H4; E. coli_4 and E. coli_7 were clusterd with  E. coli O25b: H4; and E. coli_9 and E. coli_16 were grouped with E. coli O26:H11. Our results provide insights into the genetic diversity of E. coli strains associated with diarrhea in poultry farms in Hai Phong province. The isolated strains will be further characterized for the development of effective strategies to control colibacillosis in poultry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adinortey C. A., 2014. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from clinical and environmental samples from the Cape Coast metropolis of the central region of Ghana University of Cape Coast.

Agunos A., Léger, D. & Carson C. 2012. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. The Canadian Veterinary Journal, 53(12): 1289.

Allan B. J., Van den Hurk J. V., & Potter A. A., 1993. Characterization of Escherichia coli isolated from cases of avian colibacillosis. Canadian Journal of Veterinary Research, 57(3): 146.

Babai R., Blum-Oehler G., Stern B. E., Hacker J., & Ron, E. Z., 1997. Virulence patterns from septicemic Escherichia coli O78 strains. FEMS microbiology letters, 149(1): 99−105.

Bielaszewska M., Zhang W., Mellmann A., & Karch H., 2007. Enterohaemorrhagic Escherichia coli O26: H11/H-: a human pathogen in emergence. Berliner und Munchener tierarztliche Wochenschrift, 120(7–8): 279−287.

Blanco J. E., Blanco M., Mora A., & Blanco J., 1997. Prevalence of bacterial resistance to quinolones and other antimicrobials among avian Escherichia coli strains isolated from septicemic and healthy chickens in Spain. Journal of clinical microbiology, 35(8): 2184−2185.

Burgos Y., & Beutin L., 2010. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiology, 10(1): 193.

Clark C. G., Kruczkiewicz P., Guan C., McCorrister S. J., Chong P., Wylie J., van Caeseele P., Tabor H. A., Snarr P., & Gilmour M. W., 2013. Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. Journal of microbiological methods, 94(3): 180−191.

Cloud S., Rosenberger J., Fries P., Wilson R., & Odor E., 1985. In vitro and in vivo characterization of avian Escherichia coli. I. Serotypes, metabolic activity, and antibiotic sensitivity. Avian diseases, 29(4): 1084−1093.

Cortés P., Blanc V., Mora A., Dahbi G., Blanco J. E., Blanco M., López C., Andreu A., Navarro F., & Alonso M. P., 2010. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Applied and Environmental Microbiology, 76(9): 2799−2805.

Dho-Moulin M., & Fairbrother J. M., 1999. Avian pathogenic Escherichia coli (APEC). Veterinary research, 30(2–3): 299−316.

Fairbrother J., Harel J., Forget C., Desautels C., & Moore J., 1993. Receptor binding specificity and pathogenicity of Escherichia coli F165-positive strains isolated from piglets and calves and possessing pap related sequences. Canadian Journal of Veterinary Research, 57(1): 53.

Fakruddin M., Mazumdar R. M., Chowdhury A., & Mannan K. S. B., 2013. A preliminary study on virulence factors & antimicrobial resistance in extra-intestinal pathogenic Escherichia coli (ExPEC) in Bangladesh. The Indian journal of medical research, 137(5): 988.

Geletu U. S., Usmael M. A., & Ibrahim A. M., 2022. Isolation, identification, and susceptibility profile of E. coli, Salmonella, and S. aureus in dairy farm and their public health implication in Central Ethiopia. Veterinary Medicine International, 2022. https://doi.org/ 10.1155/2022/1887977

Ghunaim H., Abu-Madi M. A., & Kariyawasam S., 2014. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations. Veterinary microbiology, 172(1–2): 13−22.

Guabiraba R., & Schouler C., (2015): Avian colibacillosis: still many black holes. FEMS microbiology letters, 362(15): fnv118.

Irwin R. J., McEwen S. A., Clarke R. C., & Meek A. H., 1989. The prevalence of verocytotoxin-producing Escherichia coli and antimicrobial resistance patterns of nonverocytotoxin-producing Escherichia coli and Salmonella in Ontario broiler chickens. Canadian Journal of Veterinary Research, 53(4): 411.

Jindal S., & Shivani M., 2018. Study on phenotypic assays to determine virulence factors of uropathogenic escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern in tertiary care hospital of western Uttar Pradesh. Indian J Basic Appl Med Res, 7(4): 275−282.

Kathayat D., Lokesh D., Ranjit S., & Rajashekara G., 2021. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens, 10(4): 467.

Kathayat D., Lokesh D., Ranjit S., & Rajashekara G., 2021. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens, 10(4).

Khattab R., 2019. Shiga toxin producing Escherichia coli in some chicken products. Benha Veterinary Medical Journal, 36(2): 345−352.

Kumar S., Stecher G., Li M., Knyaz C., & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6): 1547−1549.

Liu C. M., Stegger M., Aziz M., Johnson T. J., Waits K., Nordstrom L., Gauld L., Weaver B., Rolland D., & Statham S., 2018. Escherichia coli ST131-H 22 as a foodborne uropathogen. MBio, 9(4): e00470–18.

Lutful Kabir S. M., 2010. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health, 7(1): 89−114.

Markland S., LeStrange K., Sharma M., & Kniel K., 2015. Old friends in new places: exploring the role of extraintestinal E. coli in intestinal disease and foodborne illness. Zoonoses and Public Health, 62(7): 491−496.

Mellata M., 2013. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne pathogens and disease, 10(11): 916−932.

Mora A., Herrera A., Mamani R., López C., Alonso M. P., Blanco J. E., Blanco M., Dahbi G., García-Garrote F., & Pita J. M., 2010. Recent emergence of clonal group O25b: K1: H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Applied and Environmental Microbiology, 76(21): 6991−6997.

Nguyen L. T., Thuan N. K., Tam N. T., Huyen Trang C. T., Khanh N. P., Bich T. N., Taniguchi T., Hayashidani H., & Lien Khai L. T., 2021. Prevalence and genetic relationship of predominant Escherichia coli serotypes isolated from poultry, wild animals, and environment in the Mekong delta, Vietnam. Veterinary Medicine International, 2021: 6504648.

Nguyen V. T., Carrique-Mas J. J., Ngo T. H., Ho H. M., Ha T. T., Campbell J. I., Nguyen T. N., Hoang N. N., Pham V. M., & Wagenaar J. A., 2015. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. Journal of Antimicrobial Chemotherapy, 70(7): 2144−2152.

Nolan L. K., Barnes H. J., Vaillancourt J.-P., Abdul-Aziz T., & Logue C. M., 2013. Colibacillosis. Diseases of poultry: 751−805.

Rahman M., Samad M., Rahman M., & Kabir S., 2004. In vitro antibiotic sensitivity and therapeutic efficacy of experimental salmonellosis, colibacillosis and pasteurellosis in broiler chickens. Bangladesh Journal of Veterinary Medicine, 2(2): 99−102.

Ronco T., Stegger M., Olsen R. H., Sekse C., Nordstoga A. B., Pohjanvirta T., Lilje B., Lyhs, U., Andersen P. S., & Pedersen K., 2017. Spread of avian pathogenic Escherichia coli ST117 O78: H4 in Nordic broiler production. BMC genomics, 18(1): 1–8.

Sang N. H., Thu H. T. V., & Khai L. T. L., 2017. Study on the infection rate and antimicrobial resistance of Escherichia coli in ducks in Dong Thap province. CTU Journal of Science, (50): 59−66. (in Vietnamese).

Singhal N., Kumar M., Kanaujia P. K., & Virdi J. S., 2015. MALDI-TOF mass spectrometry: an emerging technology for
microbial identification and diagnosis. Front Microbiol, 6: 791.

Solà-Ginés M., Cameron-Veas K., Badiola I., Dolz R., Majó N., Dahbi G., Viso S., Mora A., Blanco J., & Piedra-Carrasco N., 2015. Diversity of multi-drug resistant avian pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PloS one, 10(11): e0143191.

Younis G., Awad A., & Mohamed N., 2017. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Veterinary world, 10(10): 1167.

Yousef H. M., Hashad M. E., Osman K. M., Alatfeehy N. M., Hassan W. M., Elebeedy L. A., Salem H. M., Shami A., Al-Saeed F. A., & El-Saadony M. T., 2023. Surveillance of Escherichia coli in different types of chicken and duck hatcheries: one health outlook. Poultry science, 102(12): 103108.

Zahid A., AL-Mossawei M., & Mahmood A. B., 2016. In vitro and in vivo pathogenicity tests of local isolates APEC from naturally infected broiler in Baghdad. Int. J. Adv. Res. Biol. Sci, 3(3): 89−100.

Downloads

Published

25-09-2024

How to Cite

Dong, V. Q., Pham, T. L., & Nguyen, K. O. (2024). Isolation and characterization of <i>Escherichia coli</i> associated with diarrhea in chickens and ducks in Hai Phong province. Academia Journal of Biology, 46(3), 17–26. https://doi.org/10.15625/2615-9023/20228

Issue

Section

Articles