Genome mining reveals chitin degradation potential of \(\textit{Streptomyces parvulus}\) VCCM 22513

Quach Ngoc Tung, Nguyen Thi Thu An, Vu Thi Hanh Nguyen, Phi Quyet Tien
Author affiliations

Authors

  • Quach Ngoc Tung Institute of Biotechnology, VAST, Vietnam
  • Nguyen Thi Thu An Institute of Biotechnology, VAST, Vietnam
  • Vu Thi Hanh Nguyen Institute of Biotechnology, VAST, Vietnam
  • Phi Quyet Tien Institution of Biotechnology, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/2615-9023/18027

Keywords:

CAZy, chitin degradation, chitinases, chitooligosaccharides, genomic analysis, Streptomyces parvulus

Abstract

The genus Streptomyces is not only known as a natural producer of antibiotics but also a prolific source of chitinolytic enzymes that digest recalcitrant chitin to chitooligosaccharides. However, only a few reports have used whole-genome sequencing to study chitin degradation of Streptomyces to date. In the present study, out of 22 Streptomyces strains, Streptomyces parvulus VCCM 22513 produced the highest chitinase activity. Time courses of incubation revealed that the maximum chitinase (0.91 ± 0.04 U/mL) of this strain was observed after 96 hours in the yeast extract salts medium supplemented with 10.0 g/L colloidal chitin. Additional genomic analysis of VCCM 22513 was also conducted to discover the genomic information related to chitin degradation. The VCCM 22513 genome consists of 341 CAZy genes divided into 6 families including glycoside hydrolase (134 genes), carbohydrate-binding module (88 genes), glycosyl transferase (87 genes), carbohydrate esterase (18 genes), polysaccharide lyase (7 genes), and auxiliary activity (7 genes). Further genome mining revealed the presence of 10 chitinases, 4 lytic polysaccharide monooxygenases, and 14 β-N-acetylhexosaminidases, which mainly contribute to the degradation of chitin polymers. This is the first report revealing the mechanism underlying the chitin degradation of S. parvulus. Further investigations are required to characterize chitinolytic enzymes found in this study for the bioeconomic production of high-quality chitooligosaccharides from chitin food wastes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abady S. M., Ghanem M. K., Ghanem N. B., Embaby A. M., 2022. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene). Mol Biol Rep, 49(2): 951–969. https://doi.org/ 10.1007/s11033-021-06914-9

Coutinho P. M., Deleury E., Davies G. J., Henrissat B., 2003. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 328(2): 307–317. https://doi.org/10.1016/s0022-2836(03)00307-3

Dimkić I., Bhardwaj V., Carpentieri-Pipolo V., Kuzmanović N., Degrassi G., 2021. The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence. PloS one, 16(11): e0259465. https://doi.org/10.1371/journal.pone.0259465

Doan C. T., Tran T. N., Wang S.-L., 2021. Production of thermophilic chitinase by Paenibacillus sp. TKU052 by bioprocessing of chitinous fishery wastes and its application in N-acetyl-D-glucosamine production. Polymers, 13(18): 3048.

Ekundayo F. O., Folorunsho A. E., Ibisanmi T. A., Olabanji O. B., 2022. Antifungal activity of chitinase produced by Streptomyces species isolated from grassland soils in Futa Area, Akure. Bull Natl Res Cent, 46(1): 95. https://doi.org/10.1186/s42269-022-00782-4

Gutiérrez-Román M. I., Dunn M. F., Tinoco-Valencia R., Holguín-Meléndez F., Huerta-Palacios G., Guillén-Navarro K., 2014. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). World journal of microbiology & biotechnology, 30(1): 33−42. https://doi.org/10.1007/s11274-013-1421-2

Jensen M. S., Klinkenberg G., Bissaro B., Chylenski P., Vaaje-Kolstad G., Kvitvang H. F., Nærdal G. K., Sletta H., Forsberg Z., Eijsink V. G. H., 2019. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. J Biol Chem, 294(50): 19349–19364. https://doi.org/10.1074/jbc.RA119.010056

Jha S., Modi H. A., Jha C. K., 2016. Characterization of extracellular chitinase produced from Streptomyces rubiginosus isolated from rhizosphere of Gossypium sp. Cogent Food Agric, 2(1): 1198225. https://doi.org/10.1080/23311932.2016.1198225

Kim S. K., Park J. E., Oh J. M., Kim H., 2021. Molecular characterization of four alkaline chitinases from three chitinolytic bacteria isolated from a Mudflat. Int J Mol Sci, 22(23)10.3390/ijms222312822

Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B., Shukla M., Vonstein V., Wattam A. R., Xia F., Stevens R., 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res., 42: D206-D214. https://doi.org/10.1093/nar/gkt1226

Paulsen S. S., Andersen B., Gram L., Machado H., 2016. Biological potential of chitinolytic marine bacteria. Marine drugs, 14(12):230. https://doi.org/ 10.3390/md14120230

Quach N. T., Nguyen Vu T. H., Bui T. L., Pham A. T., An Nguyen T. T., Xuan Le T. T., Thuy Ta T. T., Dudhagara P., Phi Q. T., 2022a. Genome-guided investigation provides new insights into secondary metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum. Polish journal of microbiology, 71(3): 381–394. https://doi.org/10.33073/pjm-2022-034

Quach N. T., Vu T. H. N., Bui T. L., Le T. T. X., Nguyen T. T. A., Ngo C. C., Phi Q.-T., 2022b. Genomic and physiological traits provide insights into ecological niche adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. Ann Microbiol, 72(1): 27. https://doi.org/10.1186/s13213-022-01684-6

Quach N. T., Vu T. H. N., Nguyen T. T. A., Ha H., Ho P. H., Chu-Ky S., Nguyen L. H., Van Nguyen H., Thanh T. T. T., Nguyen N. A., Chu H. H., Phi Q. T., 2022c. Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56. World journal of microbiology & biotechnology, 38(10): 173. https://doi.org/10.1007/ s11274-022-03364-8

Si Trung T., Bao H. N. D., 2015. Physicochemical properties and antioxidant activity of chitin and chitosan prepared from pacific white shrimp waste. Int J Carbohydr Chem, 2015: 706259. https://doi.org/10.1155/2015/706259

Suma K., Podile A. R., 2013. Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresource technology, 133: 213–220. https://doi.org/10.1016/ j.biortech.2013.01.103

Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V., 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic acids research, 28(1): 33–36. https://doi.org/ 10.1093/nar/28.1.33

Valdez-Peña A. U., Espinoza-Perez J. D., Sandoval-Fabian G. C., Balagurusamy N., Hernandez-Rivera A., De-la-Garza-Rodriguez I. M., Contreras-Esquivel J. C., 2010. Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci Biotechnol, 19(2): 553–557. https://doi.org/10.1007/s10068-010-0077-z

Vu N. T., Quach T. N., Dao X. T., Le H. T., Le C. P., Nguyen L. T., Le L. T., Ngo C. C., Hoang H., Chu H. H., Phi Q. T., 2021. A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides. PeerJ, 9: e11839. https://doi.org/10.7717/peerj.11839

Wang M., Zheng F., Wang T., Lyu Y. M., Alteen M. G., Cai Z. P., Cui Z. L., Liu L., Voglmeir J., 2019. Characterization of Stackebrandtia nassauensis GH 20 beta-hexosaminidase, a versatile biocatalyst for chitobiose degradation. Int J Mol Sci, 20(5). https://doi.org/10.3390/ ijms20051243

Wattam A. R., Davis J. J., Assaf R., Boisvert S., Brettin T., Bun C., Conrad N., Dietrich E. M., Disz T., Gabbard J. L., Gerdes S., Henry C. S., Kenyon R. W., Machi D., Mao C., Nordberg E. K., Olsen G. J., Murphy-Olson D. E., Olson R., Overbeek R., Parrello B., Pusch G. D., Shukla M., Vonstein V., Warren A., Xia F., Yoo H., Stevens R. L., 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res., 45(D1): D535–D542. https://doi.org/10.1093/nar/gkw1017

Wu Y.-J., Cheng C.-Y., Li Y.-K., 2009. Cloning and expression of chitinase A from Serratia Marcescens for large-scale preparation of N,N-diacetyl chitobiose. Jnl Chinese Chemical Soc, 56(4):

–695. https://doi.org/10.1002/ jccs.200900103

Xu T., Qi M., Liu H., Cao D., Xu C., Wang L., Qi B., 2020. Chitin degradation potential and whole-genome sequence of Streptomyces diastaticus strain CS1801. AMB Expr, 10(1): 29. https://doi.org/ 10.1186/s13568-020-0963-6

Zhong W., Ding S., Guo H., 2015. The chitinase C gene PsChiC from Pseudomonas sp. and its synergistic effects on larvicidal activity. Genetics and molecular biology, 38(3): 366–372. https://doi.org/10.1590/s1415-475738320140320

Downloads

Published

24-06-2023

How to Cite

Ngoc Tung, Q., Thu An, N. T., Hanh Nguyen, V. T., & Quyet Tien, P. (2023). Genome mining reveals chitin degradation potential of \(\textit{Streptomyces parvulus}\) VCCM 22513. Academia Journal of Biology, 45(2), 27–36. https://doi.org/10.15625/2615-9023/18027

Issue

Section

Articles