Association of \(\textit{FSIP2}\) rs4666689 and \(\textit{PON2}\) rs7493 with male infertility in Vietnamese population

Tran Huu Dinh, Dinh Thanh Thao, Luong Thi Lan Anh, Bui Minh Duc, Nguyen Thuy Duong
Author affiliations

Authors

  • Tran Huu Dinh Institute of Genome Research, Vietnam Academy of Science and Technology
  • Dinh Thanh Thao Institute of Genome Research, Vietnam Academy of Science and Technology
  • Luong Thi Lan Anh Hanoi Medical University, Ministry of Health
  • Bui Minh Duc Institute of Genome Research, Vietnam Academy of Science and Technology
  • Nguyen Thuy Duong Institute of Genomes Research, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/2615-9023/16146

Abstract

Reproductive impairment in men is a multifactorial disease and is currently considered a global health issue. Previous studies have investigated the correlation between genetic variants and male infertility in different populations. However, such studies have appeared in limited amounts in the Vietnamese population. This study aimed to assess the association of polymorphisms FSIP2 rs4666689 and PON2 rs7493 with male infertile susceptibility in the Vietnamese population. Total DNAs were isolated from 376 samples, including 175 males with infertility and 201 controls having at least one child. For FSIP2 rs4666689, all 376 samples were applied for genotyping using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). For PON2 rs7493, only 178 samples (80 infertile patients and 98 controls) were used to assess genotype frequencies. By using statistical methods, we showed that the distribution of their genotypes was in accordance with Hardy-Weinberg equilibrium (p-values > 0.05). However, no association between both polymorphisms (FSIP2 rs4666689 and PON2 rs7493) and male infertility in the Vietnamese population was detected (p-values > 0.05). This study would help enrich to the knowledge about the effects of hereditary factors on male infertility in the Vietnamese population.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aragon T. J., 2020. Epitools: Epidemiology Tools. R package version 0.5-10.1. https://cran.r-project.org/package=epitools

Brown P. R., Miki K., Harper D. B., Eddy E. M., 2003. A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biol. Reprod., 68(6): 2241–2248. https://doi.org/10.1095/ biolreprod.102.013466

Devarajan A., Bourquard N., Hama S., Navab M., Grijalva V. R., Morvardi S., Clarke C. F., Vergnes L., Reue K., Teiber J. F., Reddy S. T., 2011. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxidants Redox Signal., 14(3): 341–351. https://doi.org/ 10.1089/ars.2010.3430

Dinesh V., 2012. Supraphysiological Free Radical Levels and their Pathogenesis in Male Infertility. Reprod. Syst. Sex. Disord., 01(04). https://doi.org/10.4172/ 2161-038x.1000114

Fainberg J., Kashanian J. A., 2019. Recent advances in understanding and managing male infertility. F1000Research, 8. https://doi.org/10.12688/f1000research.17076.1

Graffelman J., 2015. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Softw., 64(3): 1–23. https://www.jstatsoft.org/v64/i03/

Horke S., Witte I., Wilgenbus P., Krüger M., Strand D., Förstermann U., 2007. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation, 115(15): 2055–2064. https://doi.org/10.1161/ CIRCULATIONAHA.106.681700

Inhorn M. C., Patrizio P., 2014. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update, 21(4): 411–426. https://doi.org/10.1093/humupd/dmv016

Krausz C., Escamilla A. R., Chianese C., 2015. Genetics of male infertility: From research to clinic. Reproduction, 150(5): R159-74. https://doi.org/10.1530/REP-15-0261

Krausz C., Riera-Escamilla A., 2018. Genetics of male infertility. Nat. Rev. Urol., 15(6): 369–384. https://doi.org/10.1038/s41585-018-0003-3

Lazaros L. A., Xita N. V., Hatzi E. G., Kaponis A. I., Stefos T. J., Plachouras N. I., Makrydimas G. V., Sofikitis N. V., Zikopoulos K. A., Georgiou A. I. A., 2011. Association of paraoxonase gene polymorphisms with sperm parameters. J. Androl., 32(4): 394–401. https://doi.org/ 10.2164/jandrol.110.010348

Li X. T., Li X., Hu F. F., Shen H. X., Cao J. L., Zhong L., Zhang Z. D., Zhu B. L., 2013. Association between paraoxonase 2 gene polymorphisms and noise-induced hearing loss in the chinese population. J. Occup. Health, 55(2): 56–65. https://doi.org/10.1539/joh.12-0242-oa

Liu M., Sun Y., Li Y., Sun J., Yang Y., Shen Y., 2021. Novel mutations in FSIP2 lead to multiple morphological abnormalities of the sperm flagella and poor ICSI prognosis. Gene, 781. https://doi.org/ 10.1016/j.gene.2021.145536

Liu W., Wu H., Wang L., Yang X., Liu C., He X., Li W., Wang J., Chen Y., Wang H., Gao Y., Tang S., Yang S., Jin L., Zhang F., Cao Y., 2019. Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia. J. Genet. Genomics, 46(1): 53–56. https://doi.org/10.1016/j.jgg.2018.09.006

Magalhães J. A., Ribeiro L. S., Rego J. P. A., Andrade C. R. de, 2021. Current markers for infertility in men. JBRA Assist. Reprod., 25(3). https://doi.org/10.5935/ 1518-0557.20210013

Manco G., Porzio E., Carusone T. M., 2021. Human paraoxonase-2 (Pon2): Protein functions and modulation. Antioxidants (Basel), 10(2): 256. https://doi.org/ 10.3390/antiox10020256

Martinez G., Kherraf Z. E., Zouari R., Mustapha S. F. Ben, Saut A., Pernet-Gallay K., Bertrand A., Bidart M., Hograindleur J. P., Amiri-Yekta A., Kharouf M., Karaouzène T., Thierry-Mieg N., Dacheux-Deschamps D., Satre V., Bonhivers M., Touré A., Arnoult C., Ray P. F., Coutton C., 2018. Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum. Reprod., 33(10): 1973–1984. https://doi.org/10.1093/humrep/ dey264

Mochizuki H., Scherer S. W., Xi T., Nickle D. C., Majer M., Huizenga J. J., Tsui L. C., Prochazka M., 1998. Human PON2 gene at 7q21.3: Cloning, multiple mRNA forms, and missense polymorphisms in the coding sequence. Gene, 213(1–2): 149–157. https://doi.org/10.1016/S0378-1119(98)00193-0

Ng C. J., Wadleigh D. J., Gangopadhyay A., Hama S., Grijalva V. R., Navab M., Fogelman A. M., Reddy S. T., 2001. Paraoxonase-2 is a ubiquitously expressed protein with Antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem., 276(48): 44444–44449. https://doi.org/10.1074/ jbc.M105660200

Nsota Mbango J. F., Coutton C., Arnoult C., Ray P. F., Touré A., 2019. Genetic causes of male infertility: Snapshot on morphological abnormalities of the sperm flagellum. Basic Clin. Androl., 29(1). https://doi.org/10.1186/s12610-019-0083-9

Park H. J., Kim S. K., Park H. K., Chung J. H., 2015. Association Between Paraoxonase Gene Polymorphisms and Intracerebral Hemorrhage in a Korean Population. J. Mol. Neurosci., 57(3): 410–416. https://doi.org/10.1007/s12031-015-0620-8

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Rodríguez-Esparragón F., López-Fernández J. C., Buset-Ríos N., García-Bello M. A., Hernández-Velazquez E., Cappiello L., Rodríguez-Pérez J. C., 2017. Paraoxonase 1 and 2 gene variants and the ischemic stroke risk in Gran Canaria population: an association study and meta-analysis. Int. J. Neurosci., 127(3): 191–198. https://doi.org/10.3109/00207454.2016.1165675

Sanghera D. K., Aston C. E., Saha N., Kamboh M. I., 1998. DNA polymorphisms in two paraoxonase genes (PON1 and PON2) are associated with the risk of coronary heart disease. Am. J. Hum. Genet., 62(1): 36–44. https://doi.org/10.1086/301669

Volk M., Jaklič H., Zorn B., Peterlin B., 2011. Association between male infertility and genetic variability at the PON1/2 and GSTM1/T1 gene loci. Reprod. Biomed. Online, 23(1): 105–110. https://doi.org/ 10.1016/j.rbmo.2011.03.021

Wagner H., Cheng J. W., Ko E. Y., 2018. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J. Urol., 16(1): 35–43. https://doi.org/10.1016/j.aju.2017.11.001

Zegers-Hochschild F., Adamson G. D., Dyer S., Racowsky C., de Mouzon J., Sokol R., Rienzi L., Sunde A., Schmidt L., Cooke I. D., Simpson J. L., van der Poel S., 2017. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril., 108(3): 393–406. https://doi.org/10.1016/ j.fertnstert.2017.06.005

Downloads

Published

24-09-2021

How to Cite

Huu Dinh, T., Thanh Thao, D. ., Lan Anh, L. T., Minh Duc, B., & Thuy Duong, N. . (2021). Association of \(\textit{FSIP2}\) rs4666689 and \(\textit{PON2}\) rs7493 with male infertility in Vietnamese population. Academia Journal of Biology, 43(3), 77–85. https://doi.org/10.15625/2615-9023/16146

Issue

Section

Articles

Most read articles by the same author(s)