Identification of a mutation in a Vietnamese family with Emery-Dreifuss Muscular Dystrophy using whole exome sequencing
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/16742Keywords:
EDMD, LMNA, Sanger, WES, Vietnamese.Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a degenerative neuromuscular disease associated with at least nine genes, including EMD, LMNA, FHL1, TMEM43, SUN1, SUN2, TTN, SYNE1, and SYNE2. Herein, we identified a heterozygous missense LMNA mutation (NM_170707.4: c.1357C>T,p.R453W) in three members of a Vietnamese family using whole-exome sequencing (WES), in which the proband was an 11-year-old girl presenting humeroperoneal muscle weaknesses and generalized contracture. Her father and one other relative also exhibited multiple signs of muscular atrophy and contracture. Sanger sequencing in the extended family verified the causative nature of this mutation, establishing a confirmed diagnosis of autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD2). The clinical presentations of each patient in this study are different from each other, demonstrating the intrafamilial phenotypic variability of this mutation. Early identification of the underlying genetic course of the disease by sequencing, combined with clinical findings provides solid evidence to diagnosis process, genetic counseling and management strategy.
Downloads
Metrics
References
Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P., Kondrashov A. S. and Sunyaev S. R., 2010. A method and server for predicting damaging missense mutations. Nature Methods, 7(4): 248−249. https://doi.org/10.1038/nmeth0410-248
Benedetti S., Menditto I., Degano M., Rodolico C., Merlini L., D'Amico A., Palmucci L., Berardinelli A., Pegoraro E., Trevisan C. P., Morandi L., Moroni I., Galluzzi G., Bertini E., Toscano A., Olive M., Bonne G., Mari F., Caldara R., Fazio R., Mammi I., Carrera P., Toniolo D., Comi G., Quattrini A., Ferrari M. and Previtali S. C., 2007. Phenotypic clustering of lamin A/C mutations in neuromuscular patients. Neurology, 69(12): 1285−1292. https://doi.org/ 10.1212/01.wnl.0000261254.87181.80
Bonne G., Barletta M. R. D., Varnous S., Bécane H.-M., Hammouda E.-H., Merlini L., Muntoni F., Greenberg C. R., Gary F., Urtizberea J.-A., Duboc D., Fardeau M., Toniolo D. and Schwartz K., 1999. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet, 21(3): 285−288. https://doi.org/10.1038/ 6799
Bonne G., Rabah Ben Y., Béroud C., Boriani G., Brown S., de Visser M., Duboc D., Ellis J., Hausmanowa-Petrusewicz I., Lattanzi G., Merlini L., Morris G., Muntoni F., Opolski G., Pinto Y. M., Sangiuolo F., Toniolo D., Trembath R., van Berlo J. H., van der Kooi A. J. and Wehnert M., 2003. 108th ENMC International Workshop, 3rd Workshop of the MYO-CLUSTER project: EUROMEN, 7th International Emery-Dreifuss Muscular Dystrophy (EDMD) Workshop, 13–15 September 2002, Naarden, The Netherlands. Neuromuscular Disord, 13(6): 508−515. https://doi.org/10.1016/S0960-8966(03) 00063-4
Bonne G., Leturcq F. and Ben Yaou R., 1993. Emery-Dreifuss Muscular Dystrophy, in GeneReviews®, M. P. Adam, et al., Editors. 1993, University of Washington, Seattle: Seattle (WA).
Bonne G., Mercuri E., Muchir A., Urtizberea A., Bécane H. M., Recan D., Merlini L., Wehnert M., Boor R., Reuner U., Vorgerd M., Wicklein E. M., Eymard B., Duboc D., Penisson-Besnier I., Cuisset J. M., Ferrer X., Desguerre I., Lacombe D., Bushby K., Pollitt C., Toniolo D., Fardeau M., Schwartz K. and Muntoni F., 2000. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol, 48(2): 170−180.
Carmosino M., Torretta S., Procino G., Gerbino A., Forleo C., Favale S. and Svelto M., 2014. Role of nuclear Lamin A/C in cardiomyocyte functions: Lamin A/C in cardiomyocytes physiology. Biol Cell, 106(10): 346-358. https://doi.org/ 10.1111/boc.201400033
Choi Y. and Chan A. P., 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16): 2745−2747. https://doi.org/10.1093/ bioinformatics/btv195
Dai Y., Wei X., Zhao Y., Ren H., Lan Z., Yang Y., Chen L. and Cui L., 2015. A comprehensive genetic diagnosis of Chinese muscular dystrophy and congenital myopathy patients by targeted next-generation sequencing. Neuromuscular Disord, 25(8): 617−624. https://doi.org/10.1016/j.nmd.2015.03.002
Dittmer T. A. and Misteli T., 2011. The lamin protein family. Genome Biol, 12(5): 222. https://doi.org/10.1186/gb-2011-12-5-22210.1186/gb-2011-12-5-222
Fan Y., Tan D., Song D., Zhang X., Chang X., Wang Z., Zhang C., Chan S. H.-S., Wu Q., Wu L., Wang S., Yan H., Ge L., Yang H., Mao B., Bönnemann C., Liu J., Wang S., Yuan Y., Wu X., Zhang H. and Xiong H., 2020. Clinical spectrum and genetic variations of LMNA -related muscular dystrophies in a large cohort of Chinese patients. J Med Genet: jmedgenet-2019-106671. https://doi.org/10.1136/ jmedgenet-2019-106671
Ikegami K., Secchia S., Almakki O., Lieb J. D. and Moskowitz I. P., 2020. Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria. Developmental Cell, 52(6): 699-713.e11. https://doi.org/10.1016/ j.devcel.2020.02.011
Krimm I., Östlund C., Gilquin B., Couprie J., Hossenlopp P., Mornon J.-P., Bonne G., Courvalin J.-C., Worman H. J. and Zinn-Justin S., 2002. The Ig-like Structure of the C-Terminal Domain of Lamin A/C, Mutated in Muscular Dystrophies, Cardiomyopathy, and Partial Lipodystrophy. Structure, 10(6): 811−823. https://doi.org/10.1016/S0969-2126(02) 00777-3
Lee Y., Lee J. H., Park H. J. and Choi Y.-C., 2017. Early-Onset LMNA -Associated Muscular Dystrophy with Later Involvement of Contracture. Journal of Clinical Neurology, 13(4): 405. https://doi.org/10.3988/jcn.2017.13.4.405
Madeira F., Park Y. m., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A. R. N., Potter S. C., Finn R. D. and Lopez R., 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1): W636-W641. https://doi.org/10.1093/nar/gkz268
Meinke P., Nguyen T. D. and Wehnert M. S., 2011. The LINC complex and human disease. Biochemical Society Transactions, 39(6): 1693-1697. https://doi.org/10.1042/BST20110658
Nmezi B., Xu J., Fu R., Armiger T. J., Rodriguez-Bey G., Powell J. S., Ma H., Sullivan M., Tu Y., Chen N. Y., Young S. G., Stolz D. B., Dahl K. N., Liu Y. and Padiath Q. S., 2019. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proceedings of the National Academy of Sciences, 116(10): 4307−4315. https://doi.org/10.1073/pnas.1810070116
Osmanagic-Myers S., Dechat T. and Foisner R., 2015. Lamins at the crossroads of mechanosignaling. Gene Dev, 29(3): 225−237. https://doi.org/10.1101/gad. 255968.114
Park H. J., Jang H., Kim J. H., Lee J. H., Shin H. Y., Kim S. M., Park K. D., Yim S. V., Lee J. H. and Choi Y. C., 2017. Discovery of pathogenic variants in a large Korean cohort of inherited muscular disorders. Clin Genet, 91(3): 403−410. https://doi.org/10.1111/cge.12826
Rentzsch P., Schubach M., Shendure J. and Kircher M., 2021. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Medicine, 13(1): 31. https://doi.org/10.1186/s13073-021-00835-9
Rowland L. P., Fetell M., Olarte M., Hays A., Singh N. and Wanat F. E., 1979. Emery-Dreifuss muscular dystrophy. Ann Neurol, 5(2): 111-7. https://doi.org/10.1002/ ana.410050203
Scharner J., Brown C. A., Bower M., Iannaccone S. T., Khatri I. A., Escolar D., Gordon E., Felice K., Crowe C. A., Grosmann C., Meriggioli M. N., Asamoah A., Gordon O., Gnocchi V. F., Ellis J. A., Mendell J. R. and Zammit P. S., 2011. Novel LMNA mutations in patients with Emery-Dreifuss muscular dystrophy and functional characterization of four LMNA mutations. Hum Mutat, 32(2): 152−167. https://doi.org/10.1002/humu.21361
Schwarz J. M., Cooper D. N., Schuelke M. and Seelow D., 2014. MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods, 11(4): 361−362. https://doi.org/10.1038/ nmeth.2890
Shimi T., Butin-Israeli V., Adam S. A. and Goldman R. D., 2010. Nuclear Lamins in Cell Regulation and Disease. Cold Spring Harb Sym, 75(0): 525−531. https://doi.org/10.1101/sqb.2010.75.045
Sim N.-L., Kumar P., Hu J., Henikoff S., Schneider G. and Ng P. C., 2012. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res, 40(W1): W452−W457. https://doi.org/10.1093/nar/gks539
Stenson P. D., Ball E. V., Mort M., Phillips A. D., Shiel J. A., Thomas N. S. T., Abeysinghe S., Krawczak M. and Cooper
D. N., 2003. Human Gene Mutation Database (HGMD ® ): 2003 update: HGMD 2003 UPDATE. Human Mutat, 21(6): 577−581. https://doi.org/ 10.1002/humu.10212
Storey E. C., Holt I., Morris G. E. and Fuller H. R., 2020. Muscle cell differentiation and development pathway defects in Emery-Dreifuss muscular dystrophy. Neuromuscular Disord, 30(6): 443−456. https://doi.org/10.1016/j.nmd.2020.04.002
van Berlo J. H., de Voogt W. G., van der Kooi A. J., van Tintelen J. P., Bonne G., Yaou R. B., Duboc D., Rossenbacker T., Heidbüchel H., de Visser M., Crijns H. J. G. M. and Pinto Y. M., 2005. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med-JMM, 83(1): 79−83. https://doi.org/10.1007/s00109-004-0589-1