Faecal contamination and its relationship with some environmental variables of four urban rivers in inner Hanoi city, Vietnam

Le Nhu Da, Nguyen Thi Mai Huong, Hoang Thi Thu Ha, Duong Thi Thuy, Phung Thi Xuan Binh, Pham Thi Mai Huong, Pham Thi Minh Hanh, Le Thi Phuong Quynh
Author affiliations


  • Le Nhu Da 1-Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, VAST, Cau Giay, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam
  • Nguyen Thi Mai Huong Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, VAST, Cau Giay, Hanoi, Vietnam
  • Hoang Thi Thu Ha Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, VAST, Cau Giay, Hanoi, Vietnam
  • Duong Thi Thuy Institute of Environmental Technology, VAST, Cau Giay, Hanoi, Vietnam
  • Phung Thi Xuan Binh Electric Power University, Bac Tu Liem, Hanoi, Vietnam
  • Pham Thi Mai Huong Hanoi University of Industry, Bac Tu Liem, Hanoi, Vietnam
  • Pham Thi Minh Hanh Institute of Mechanics, VAST, Ba Dinh, Hanoi, Vietnam
  • Le Thi Phuong Quynh 1-Laboratory of Environmental Chemistry, Institute of Natural Products Chemistry, VAST, Cau Giay, Hanoi, Vietnam; 2-Graduate University of Science and Technology, VAST, Cau Giay, Hanoi, Vietnam




Total coliforms, faecal coliforms, Hanoi city, water quality, point sources, wastewater


Coliform bacteria are essential variables for assessing riverine water quality. In this study, the faecal indicator bacteria (FIB) in relationship with some physico-chemical variables were investigated during the period 2020-2022 for four urban rivers (To Lich, Lu, Set, and Kim Nguu) in the inner Hanoi city to provide the updated water quality of these rivers. The results demonstrated severe faecal coliforms contamination in riverine waters compared to the permissible values of the Vietnam technical regulation for surface water quality, QCVN08-MT:2015/BTNMT column B1. Nutrients (ammonium and phosphate) concentrations and dissolved oxygen (DO) values exceeded the permissible values, whereas pH was within the standard. The Pearson analysis demonstrated the significant positive correlation between total coliforms (TC) and Escherichia coli (EC) densities and ammonium concentration in the riverine water. Besides, these variables were higher in the dry season than the rainy one for all sites observed. All these reflect the critical role of the point sources, notably domestic wastewater inputs in the four river basins. Considering these rivers' deteriorating condition, developing an effective wastewater treatment system is necessary for the rivers in Hanoi.


Download data is not yet available.


Abria A.L.K., Ubomba-Jaswa E., Momba M.N.B., 2015. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa. Science of The Total Environment, 537, 462-469. Doi: org/10.1016/j.scitotenv.2015.07.132.

Andersson M.G.I, Brion N., Middelburg J.J., 2006. Comparison of nitrifier activity versus growth in the Scheldt estuary - a turbid, tidal estuary in northern Europe. Aquat Microb Ecol., 42, 149-158.

APHA (American Public Health Association), 2017. Standard methods for the examination of water and wastewater, 23rd edition. American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, D.C., USA.

Arnold B.F., Schiff K.C., Ercumen A., Benjamin-Chung J., Steele J.A., Griffith J.F., 2017. Acute illness among surfers after exposure to seawater in dry- and wet-weather conditions. Am. J. Epidemiol., 186, 866-875. Doi: 10.1093/aje/ kwx019.

Bac Kan CRET (Bac Kan Centre of Resources and Environment Technical), 2022. Report on Environmental monitoring in Bac Kan province in 2022, p.98 (in Vietnamese).

Baez A., Shiloach J., 2017. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli. Antonie Van Leeuwenhoek, 110(1), 115-124. Doi: 10.1007/s10482-016-0781-7.

Bhardwaj R.M., 2005. Status of wastewater generation and treatment in India, IWG-Env International Work Session on Water Statistics, Vienna, 20-22 June 2005.

Bisimwa A.M., Bramuel K.a, Zoé M.K., Bamba B.M., Alidor B.K., 2022. Monitoring faecal contamination and relationship of physicochemical variables with faecal indicator bacteria numbers in Bukavu surface waters, tributaries of Lake Kivu in Democratic Republic of Congo. Hygiene and Environmental Health Advances, 3, 100012. Doi: 10.1016/j.heha.2022.100012.

Bong C.W., Low K.Y., Chai L.C., Lee C.W., 2022. Prevalence and diversity of antibiotic resistant Escherichia coli from anthropogenic-impacted Larut River. Front. Public Health, 10, 794513. Doi: 10.3389/fpubh.2022.794513.

Cabral J.P., Marques C., 2006. Faecal coliform bacteria in febros river (northwest portugal): temporal variation, correlation with water parameters, and species identification. Environ. Monit. Assess., 118, 21-36. Doi: 10.1007/s10661-006-0771-8.

Castro Fernández M.F., Cárdenas Manosalva I.R., Colmenares Quintero R.F., Montenegro Marín C.E., Diaz Cuesta Y.E., Escobar Mahecha D., Pérez Vásquez P.A., 2022. Multitemporal total coliforms and Escherichia coli analysis in the middle Bogotá river basin, 2007-2019. Sustainability, 14, 1769. Doi: 10.3390/su14031769.

Chotinantakul K., Chusri P., Okada S., 2022. Detection and characterization of ESBL-producing Escherichia coli and additional co-existence with mcr genes from river water in northern Thailand. PeerJ, 10, e14408. Doi: 10.7717/peerj.14408.

Do T.N., Nguyen D.T., Ghimire J., Vu K.C., Do Dang L.P., Pham S.L., Pham V.M., 2023 Assessing surface water pollution in Hanoi, Vietnam, using remote sensing and machine learning algorithms. Environ Sci Pollut Res Int., 30(34), 82230-82247. Doi: 10.1007/s11356-023-28127-2.

Duong T.T., Le P.T., Nguyen T.N.H., Hoang T.Q., Ngo H.M., Doan T.O., Le T.P.Q., Bui H.T., Bui M.H., Trinh V.T., Nguyen T.L., Le N.D., Vu T.M., Tran T.K.C., Ho T.C., Phuong N.N., Strady E., 2022. Selection of a density separation solution to study microplastics in tropical riverine sediment. Environmental Monitoring and Assessment, 194, 65. Doi: 10.1007/s10661-021-09664-0.

Goto D.K., Yan T., 2011. Effects of land uses on fecal indicator bacteria in the water and soil of a tropical watershed. Microbes Environ., 26, 254-260. Doi: 10.1264/jsme2.ME11115.

Gqomfa B., Maphanga T., Phungela T.T., Madonsela B.S., Malakane K., Lekata S., 2023. El Niño Southern Oscillation (ENSO) implication towards Crocodile river water quality in South Africa. Sustainability, 15, 11125. Doi: 10.3390/su151411125.

Gwimbi P., George M., Ramphalile M., 2019. Bacterial contamination of drinking water sources in rural villages of Mohale basin, Lesotho: exposures through neighbourhood sanitation and hygiene practices. Environ Health Prev Med., 24(1), 33. Doi: 10.1186/s12199-019-0790-z.

Ha Giang DONRE, 2022. Report on Environmental monitoring in Ha Giang province in 2022, p.89 (in Vietnamese).

Hai Phong DONRE, 2021. Report on water quality monitoring results of different rivers in Hai Phong city (Gia, Re and Da Do; Cam river and Lach Tray river; Chanh Duong river, Hon Ngoc canal and Tien Lang irrigation system) in 2021, p.68 (in Vietnamese).

Hanoi-GSO, 2021. General Statistical Official of Hanoi. Statistical Yearbook of Hanoi 2020, 672p.

Hanoi-GSO, 2022. General Statistical Official of Hanoi. Statistical Yearbook of Hanoi 2021, 685p.

Harmon S.M., West R., Yates J., 2014. Identifying fecal pollution sources using 3M™ Petrifilm™ count plates and antibiotic resistance analysis in the Horse Creek watershed in Aiken County, SC (USA). Environ. Monit. Assess., 186(12), 8215-8227. Doi: 10.1007/s10661-014-3999-8.

He H., Zhen Y., Mi T., Fu L., Yu Z., 2018. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan bay, China. Front. Microbiol, 9, 116. Doi: 10.3389/fmicb.2018.00116.

Hiruy A.M., Jemila M., Mihret M.H., Kishor A., Giacomo B., Alemseged T. H., Claire W., David W., 2022. Spatiotemporal variation in urban wastewater pollution impacts on river microbiomes and associated hazards in the Akaki catchment, Addis Ababa, Ethiopia. Science of The Total Environment, 826, 153912. Doi: 10.1016/j.scitotenv.2022.153912.

Hochiminh DONRE (Department of Natural Resources and Environment of Hochiminh city), 2021. Environmental status report of Hochiminh city in 2021, p.167 (in Vietnamese).

Islam M.M.M., Hofstra N., Islam M.A., 2017. The impact of environmental variables on Faecal Indicator Bacteria in the Betna River basin, Bangladesh. Environmental Processes, 4(2), 319-332. Doi: 10.1007/s40710-017-0239-6.

Islam M.M.M., Islam M.A., 2022. The impact of anthropogenic and environmental factors on the variability of Escherichia coli in rivers in southwest Bangladesh. Sustain. Water Resour. Manag., 8, 169. Doi: 10.1007/s40899-022-00756-4.

Kauppinen A., Al-Hello H., Zacheus O., Kilponen J., Maunula L., Huusko S., Lappalainen M., Miettinen I., Blomqvist S., Rimhanen-Finne R., 2017. Increase in outbreaks of gastroenteritis linked to bathing water in Finland in summer 2014. Euro. Surveill, 22(8), 30470. Doi: 10.2807/1560-7917.ES. 2017.22.8.30470.

Kodera S.M., Sharma A., Martino C., Dsouza M., Grippo M., Lutz H.L., Knight R., Gilbert J.A., Negri C., Allard S.M., 2023. Microbiome response in an urban river system is dominated by seasonality over wastewater treatment upgrades. Environmental Microbiome, 18, 10. Doi: 10.1186/s40793-023-00470-4.

Kubera Ł., 2021. Spread patterns of antibiotic resistance in faecal indicator bacteria contaminating an urbanized section of the Brda River. Microb. Ecol., 81(3), 592-600. Doi: 10.1007/s00248-020-01624-4.

Larif M., Soulaymani A., Hnach M., El Midaoui A., 2013. Spatio-temporal waterborne contamination of the Boufekrane wadi in the Meknes-Tafilalt region (Morocco). Int. J. Biol. Chem. Sci., 7(1), 172-184. Doi: 10.4314/ijbcs.v7i1.14.

Le B.V., Ho T.V., 2020. The current situation of water quality in Tien river flowing through Cao Lang city, Dong Thap province. Industry and trade magazine, 19, 167-174. (in Vietnamese).

Le N.D., Hoang Q.A, Hoang T.T.H., Nguyen T.A.H., Duong T.T., Pham, T.M.H, Nguyen T.D., Hoang V.C., Phung T.X.B., Le H.T., Tran C.S, Dang T.H., Vu N.T., Nguyen T.N., Le T.P.Q., 2021. Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): concentrations, profiles, source estimation, and risk assessment. Environmental Science and Pollution Research, 28, 10622-10632, Doi: 10.1007/s11356-020-11329-3.

Le N.D., Hoang T.T.H., Nguyen T.M.H., Rochelle-Newall E., Pham T.M.H., Phung T.X.B., Duong T.T., Nguyen T.A.H., Dinh L.M., Duong T.N., Nguyen T.D., Le T.P.Q., 2023. Microbial contamination in a coastal marine environment of aquaculture zone in North Vietnam. Marine Pollution Bulletin, 192, 115078. Doi: 10.1016/j.marpolbul.2023.115078.

Liang L., Goh S., Vergara G., Fang H., Rezaeinejad S., Chang S., Bayen S., Lee W., Sobsey M.D., Rose J., 2015. Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment. Appl Environ Microbiol, 81, 850-860. Doi: 10.1128/AEM .02670-14.

Lim F., Ong S., Hu J., 2017. Recent advances in the use of chemical markers for tracing wastewater contamination in aquatic environment: a review. Water, 9, 143. Doi: 10.3390/w9020143.

Liu J.W., Fu B.B., Yang H.M., Zhao M.X., He B.Y., Zhang X.H., 2015. Phylogenetic shifts of bacterioplankton community composition

along the Pearl estuary: the potential impact of hypoxia and nutrients. Front. Microbiol, 6, 64. Doi: 10.3389/fmicb.2015.00064.

Long An DONRE, 2020. Environmental status report of Long An province in the period 2016-2020, p.247 (in Vietnamese).

Lubos L.C., Bicar E.F.B., Perez K.K.T., Rondina A. J. L., Seeto L. R. Y, Tautho K.Z.B, Valenzuela C.J.P., 2013. A study on the Fecal Contamination of Cagayan de Oro River along the downstream (Bonbon) sampling sites and the factors affecting contamination August 2008-March 2009. Adv. Nurs Res., 5(1), 23-42.

Luong D.H., Nguyen X.H., Tran T.H., Nguyen H.H., Pham H.S., Dinh T.T.L., Nguyen V.H., Ho N.H., Pham A.H., Phi P.H., 2016. Assessing the surface water quality related to odor problem of sme rivers in Ha Noi Inner city. VNU Journal of Science: Earth and Environmental Sciences, 32(1S), 147-155 (in Vietnamese).

Maes S., Odlare M., Jonsson A., 2022. Fecal indicator organisms in northern oligotrophic rivers: An explorative study on Escherichia coli prevalence in a mountain region with intense tourism and reindeer herding. Environ Monit Assess, 194(4), 264. Doi: 10.1007/s10661-022-09865-1.

Mallin M.A., McIver M.R. 2012. Pollutant impacts to cape Hatteras national seashore from urban runoff and septic leachate. Mar. Pollut. Bull, 64, 1356-1366. Doi: 10.1016/j.marpolbul.2012.04.025.

Maphanga T., Madonsela B.S., Chidi B.S., Shale K., Munjonji L., Lekata S., 2022. The effect of rainfall on Escherichia coli and chemical oxygen demand in the effluent discharge from the Crocodile River wastewater treatment, South Africa. Water, 14, 2802. Doi: 10.3390/w14182802.

MDC (The Miami Conservancy District), 2018. MCD Report No. 2018-23: Relationship of Escherichia Coli levels to rainfall, runoff, and water quality variables at two urban sites in the Great Miami River watershed, p.16.

Mulholland P.J., Houser J.N., Maloney K.O., 2005. Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects: fort Benning as a case study. Ecol. Indic., 5(3), 243-252. Doi: 10.1016/j.ecolind.2005.03.004.

Nguyen D.D., Telichenko V.I., Slesarev M.Yu., 2018. Sources and causes of surface water pollution in Hanoi (Vietnam). Vestnik MGSU, Proceedings of Moscow State University of Civil Engineering, 13(10), 1234-1242. Doi: 10.22227/1997-0935.2018.10.1234-1242.

Nguyen L.H., 2012. Farmers and wastewater management - A case study of integrated urban wastewater management and agriculture in Hanoi, Vietnam. International Journal of Environmental and Rural Development, 3(1), 162-167.

Nguyen T.B.N, Nguyen B.T., Nguyen T.M.H., Vu D.A., Duong T.T., Ho T.C., Le T.P.Q., 2014. Preliminary monitoring results of total coliforms and fecal coliform in the Red river system, in the section from Yen Bai to Hanoi. Academia Journal of Biology, 36(2), 240-246. Doi: 10.15625/0866-7160/v36n2.5122.

Nguyen T.M.H., Billen G., Garnier J., Rochelle-Newall E., Ribolzi, O., Le T.P.Q., 2016b. Modeling of faecal indicator bacteria (FIB) in the Red River basin (Vietnam). Environmental Monitoring and Assessment, 188, 517. Doi: 10.1007/s10661-016-5528-4.

Nguyen T.M.H., Le T.P.Q., Garnier J., Janeau J.L.J., Rochelle-Newall E., 2016a. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam. Sci. Rep., 6, 21644. Doi: 10.1038/srep21644.

Ouattara N., Passerat J., Servais P., 2011. Faecal contamination of water and sediment in the rivers of the Scheldt drainage network. Environ Monit. Assess, 183(1-4), 243-257. Doi: 10.1007/s10661-011-1918-9.

Paule-Mercado M.A., Ventura J.S., Memon S.A., Jahng D., Kang J.H., Lee C.H., 2016. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff. Sci. Total Environ, 550, 1171-1181. Doi: 10.1016/j.scitotenv.2016.01.026.

Real Md.K.H., Khanam N., Mia Md.Y., Nasreen M., 2017. Assessment of water quality and microbial load of Dhaleshwari River Tangail, Bangladesh. Advances in Microbiology, 7(6), 523-533. Doi: 10.4236/aim.2017.76041.

Reynolds L.J., Martin N.A., Sala-Comorera L., Callanan K., Doyle P., O'Leary C., Buggy P., Nolan T.M., O'Hare G.M.P., O'Sullivan J.J., Meijer W.G., 2021. Identifying sources of faecal contamination in a small urban stream catchment: A multiparametric approach. Front. Microbiol., 12, 661954. Doi: 10.3389/fmicb.2021.661954.

Servais P., Barillier A., Garnier J., 1995. Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters. Int J Limnol., 31(1), 75-80. Doi: 10.1051/limn/1995005.

Servais P., Billen G., Goncalves A., Garcia-Armisen T., 2007a. Modelling microbiological water quality in the Seine river drainagenetwork: past, present and future situations. Hydrol. Earth Syst. Sci., 11, 1581-1592. Doi: 10.5194/hess-11-1581-2007.

Servais P., Garcia-Armisen T., George I., Billen G., 2007b. Fecal bacteria in the rivers of the Seine drainage network (France): Sources, fate and modeling. Sci Total. Environ., 375, 152-167. Doi: 10.1016/j.scitotenv.2006.12.010.

Soc Trang DONRE, 2021. Data of surface water quality observation basing on water quality index (WQI) in Soc Trang province in 2021. https://sotnmt.soctrang.gov.vn/stn/1284/30706/54233/301336/Ket-qua-quan-trac-chat-luong-nuoc-theo-chi-so--WQI (retrieved on 8/8/2023). https://sotnmt.soctrang.gov.vn/stn/1284/30706/54233/301336/Ket-qua-quan-trac-chat-luong-nuoc-theo-chi-so--WQI (retrieved on 8/8/2023).">

Spataru P., 2022. Influence of organic ammonium derivatives on the equilibria between NH4+, NO2− and NO3− ions in the Nistru River water. Sci Rep., 12, 13505. https://doi.org/10.1038/s41598-022-17568-3. https://doi.org/10.1038/s41598-022-17568-3.">

Sunagawa S., Coelho L.P., Chaffron S., Kultima J.R., Labadie K., Salazar G., et al., 2015. Structure and function of the global ocean microbiome. Science, 348, 1261359. Doi: 10.1126/science.1261359.

Thuong N.T., Yoneda M., Ikegami M., 2013. Source discrimination of heavy metals in sediment and water of To Lich river in Hanoi city using multivariate statistical approaches. Environ Monit Assess, 185, 8065-8075. Doi: 10.1007/s10661-013-3155-x.

Tien Giang DONRE, 2020. Tien Giang province environmental status report in the period 2015-2020, p.234 (in Vietnamese).

Tillett B.J., Sharley D., Almeida M., Valenzuela I., Hoffmann A.A., Pettigrove V., 2018. A short work-flow to effectively source faecal pollution in recreational waters - a case study. Sci. Total Environ, 644, 1503-1510. Doi: 10.1016/j.scitotenv.2018.07.005.

Tran D.D., Nguyen Q.Q., Nguyen T.T.H., Pham L., 2021. Assessment of water quality on La Buong River using spatiotemporal principal component analysis. Vietnam Journal of Hydro-meteorology., 731, 36-53. Doi: 10.36335/VNJHM.2021(731), 36-53 (in Vietnamese).

Vasemägi A., Visse M., Kisand V., 2017. Effect of environmental factors and an emerging parasitic disease on gut microbiome of wild salmonid fish. MSphere, 2(6), e00418-17. Doi: 10.1128/mSphere.00418-17.

Walker J.W., van Duivenboden R., Neale M.W., 2015. A tiered approach for the identification of faecal pollution sources on an Auckland urban beach. N.Z. J. Mar. Freshw. Res., 49, 333-345. Doi: 10.1080/00288330.2015.101 4376.

Weller D.L., Marik C., Johnson S., Green H., Michalenko E.M., Love T., Strawn L.K., 2021. Land use, weather and water quality factors are associated with fecal contamination of Northeastern streams that span an urban-rural gradient. Frontiers Water, 3, 741676. Doi: 10.3389/frwa.2021.741676/full.

XLSTAT Addinsoft, 2019. XLSTAT Statistical and Data Analysis Solution, Addinsoft, Boston, MA, USA.

Yadav S.K., Mishra G.C., 2014. Analysis of water quality parameters of River Hindon entering in Saharanpur (UP, India). Int. J. Env Res. Develop., 4(3), 269-274.




How to Cite

Le Nhu, D., Nguyen Thi Mai, H., Hoang Thi Thu, H., Duong Thi, T., Phung Thi Xuan, B., Pham Thi Mai, H., Pham Thi Minh, H., & Le Thi Phuong, Q. (2023). Faecal contamination and its relationship with some environmental variables of four urban rivers in inner Hanoi city, Vietnam . Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/19327




Most read articles by the same author(s)