A balanced edge detector for aeromagnetic data
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/18461Keywords:
Aeromagnetic data, enhancement filters, magnetization direction, directional analytic signal, Southern Brazil.Abstract
One of the most significant challenges in interpreting magnetic data is to mitigate the influence of the magnetization direction in the shape of the anomalies, especially when reduction to the pole fails to position them over the sources. We propose a balanced high-order filter that has low sensitivity to the direction of the resultant magnetization. We consider an edge-detector filter based on directional analytic signals of the vertically-integrated anomaly field. To ensure that anomalies from shallow and deep sources are equalized, we balance this filter with the magnitude of its two-dimensional Hilbert transform. The proposed filter is tested using aeromagnetic data from Apiaí Terrane, Southern Brazil. The enhanced map is highly correlated with the study area's NE-SW trend of geological structures. Our results highlight the importance of using the directional analytical signals, which help reduce the influence of the magnetization direction, and the balancing filters, for equalizing the signal of shallow and deep causative sources.
Downloads
References
Baranov V., Naudy H., 1964. Numerical calculation of the formula of reduction to the magnetic pole. Geophysics, 29(1), 67-79.
Beiki M., 2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6), I59-I74.
Castro L.G.D., Ferreira F.J.F., 2015. Geophysical-structural framework of southern Ribeira Belt. Brazilian Journal of Geology, 45(4), 499-516, in Portuguese.
Cooper G.R.J., 2009. Balancing images of potential-field data. Geophysics, 74(3), L17-L20.
Dannemiller N., Li Y., 2006. A new method for determination of magnetization direction. Geophysics, 71(6), L69-L73.
De Souza J., Ferreira F.J.F., 2012. On the use of derivatives for interpreting magnetic anomalies due to dyke-like bodies: Qualitative and quantitative analysis. In: Istanbul 2012-International Geophysical Conference and Oil & Gas Exhibition. Society of Exploration Geophysicists, 1-4.
De Souza J., Oliveira S.P., Ferreira F.J.F., 2020. Using parity decomposition for interpreting magnetic anomalies from dikes having arbitrary dip angles, induced and remanent magnetization. Geophysics, 85(3), J51-J58.
Faleiros F.M., Morais S.M., Costa V.S., 2012. Geology and mineral resources of the Apiaí sheet - SG.22-X-B-V - states of São Paulo e Paraná (Scale 1:100.000). Tech. rep., Geological Survey of Brazil, in Portuguese.
Fedi M., Florio G., Rapolla A., 1994. A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies. Geophysical Prospecting, 42(3), 261-274.
Geological Survey of Brazil, 2011. Aerogeophysical project Paraná-Santa Catarina: survey and processing of magnetometric and gamma-ray spectrometric data. Tech. rep., Lasa Prospecções, in Portuguese.
Hang N.T., Thanh D.D., Minh L.H., 2017. Application of directional derivative method to determine boundary of magnetic sources by total magnetic anomalies. Vietnam Journal of Earth Sciences, 39(4), 360-375.
Kamto P.G, Oksum E., Pham L.T., Kamguia J., 2023. Contribution of advanced edge detection filters for the structural mapping of the Douala Sedimentary Basin along the Gulf of Guinea. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/18410
Kumar U., Pal S.K., Sahoo S.D., Narayan S., Saurabh S. M., Ganguli S.S., 2018 Lineament mapping over Sir Creek ofshore its surroundings using high resolution EGM2008 gravity data: an integrated derivative approach. Journal of the Geological Society of India, 91, 671-678.
Kumar U., Narayan S., Pal S.K., 2022. Structural and tectonic interpretation of EGM2008 gravity data around the Laccadive ridge in the Western Indian Ocean: An implication to continental crust. Geocarto International, 37(11), 3179-3198.
Li X., 2006. Understanding 3D analytic signal amplitude. Geophysics, 71(2), L13-L16.
Li X., 2008. Magnetic reduction-to-the-pole at low latitudes: Observations and considerations. The Leading Edge, 27(8), 990-1002.
Melouah O., Eldosouky A.M., Ebong E.D., 2021a. Crustal architecture, heat transfer modes and geothermal energy potentials of the Algerian Triassic provinces. Geothermics, 96, 102211.
Melouah O., Pham L.T., 2021. An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177, 104162.
Melouah O., Steinmetz R.L.L., Ebong E.D., 2021. Deep crustal architecture of the eastern limit of the West African Craton: Ougarta Range and Western Algerian Sahara. Journal of African Earth Sciences, 183, 104321.
Nabighian M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517.
Narayan S., Sahoo S.D., Pal S.K., Kumar U., Pathak V.K., Majumdar T.J., Chouhan A., 2017. Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto International, 32(4), 351-366.
Narayan S., Kumar U., Pal S.K., Sahoo S.D., 2021. New insights into the structural and tectonic settings of the Bay of Bengal using high-resolution earth gravity model data. Acta Geophysica, 69, 2011-2033.
Oksum E., Le D.V., Vu M.D., Nguyen T.H.T., Pham L.T., 2021. A novel approach based on the fast sigmoid function for interpretation of potential field data. Bulletin of Geophysics and Oceanography, 62, 543-556.
Oliveira S.P., Pham L.T., 2022. A stable finite difference method based on upward continuation to evaluate vertical derivatives of potential field data. Pure and Applied Geophysics, 179(12), 4555-4566.
Pham L.T., Oksum E., Duc T., Vu M.D., 2021. Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bulletin of the Mineral Research and Exploration, 163, 53-62.
Pham L.T., Eldosouky A.M., Melouah O., Abdelrahman K., Alzahrani H., Oliveira S.P., Andráš P., 2021. Mapping subsurface structural lineaments using the edge filters of gravity data. Journal of King Saud University-Science, 33(8), 101594.
Pham L.T., Oksum E., Kafadar O., Trinh P.T., Nguyen D.V., Vo Q.T., Le S.T., Do T.D., 2022. Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient. Vietnam Journal of Earth Sciences, 44(3), 395-409.
Pham L.T., Prasad K.N.D., 2023. Analysis of gravity data for extracting structural features of the northern region of the Central Indian Ridge. Vietnam Journal of Earth Sciences, 45(2), 147-163.
Rao D.B., Babu N.R., 1991. A rapid method for three-dimensional modeling of magnetic anomalies. Geophysics, 56(11), 1729-1737.
Roest W.R., Verhoef J., Pilkington M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.
Rosales M.J.T., Shukowsky W., Mantovani M.S.M., 2001. Geophysical study on the structural geological context of the Apiaí Belt, Southwest São Paulo, Brazil. In: 7th International Congress of the Brazilian Geophysical Society, Brazilian Geophysical Society, in Portuguese, 474-477.
Sahoo S., Narayan S., Pal S.K., 2022. Fractal analysis of lineaments using CryoSat-2 and Jason-1 satellite-derived gravity data: Evidence of a uniform tectonic activity over the middle part of the Central Indian Ridge. Physics and Chemistry of the Earth, 128, 103237.
Weihermann J.D., Ferreira F.J.F., Oliveira S.P., Cury L.F., De Souza J., 2018. Magnetic interpretation of the Paranaguá terrane, southern Brazil by signum transform. Journal of Applied Geophysics, 154, 116-127.