Sea-level rise in Hai Phong coastal area (Vietnam) and its response to ENSO - evidence from tide gauge measurement of 1960-2020

Nguyen Minh Hai, Sylvain Ouillon, Vu Duy Vinh
Author affiliations

Authors

  • Nguyen Minh Hai 1-Institute of Marine Environment and Resources, VAST, Haiphong City, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Viet Nam
  • Sylvain Ouillon 1-UMR LEGOS, University of Toulouse, IRD, CNES, CNRS, UPS, 14 avenue Edouard Belin, 31400 Toulouse, France; 2-University of Science and Technology of Hanoi (USTH), VAST, Hanoi 100000, Vietnam
  • Vu Duy Vinh Institute of Marine Environment and Resources, VAST, Haiphong City, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/16961

Keywords:

Sea-level rise, ENSO, interannual sea-level variability, Hon Dau, Hai Phong

Abstract

The Hai Phong coastal area (Northwest of the Vietnam East Sea) is prosperous and densely populated, but it is also a place that is considered likely to be severely affected by sea-level rise. Based on the tide gauge measurement data at Hon Dau station during 1960-2020, the sea-level rise trends were analyzed and linked to the El Niño Southern Oscillation (ENSO). The analyses were carried out separately for the whole period (1960-2020) and for the last 19 years (2002-2020) by the Mann-Kendall test and Sen’s slope estimator. The Empirical Mode Decomposition method was used to identify the role of ENSO on the water level variability. The results showed a significant sea-level rise trend with a 95% confidence level. The average annual rates of sea-level were 3.56 mm/year and 7.78 mm/year over the periods 1960-2020 and 2002-2020, respectively, indicating a sea-level rise of about 21.4 cm over 60 years and a significant acceleration in sea-level rise recently (14.7 cm over the last 19 years). Sea-level that rose during El Niño events and declined during La Niña, related to ENSO with cycles of 2 and 6.1 years. From 1960 to 2020, ENSO events took four months to impact the sea-level in the Hai Phong coastal area, causing sea-level variability within -3.7 to 7.2 cm over 1972-2020.

Downloads

Download data is not yet available.

References

A.D.B., 2013. Vietnam: Environment and Climate Change Assessment. https://www.adb.org/documents/viet-nam-environment-and-climate-change-assessment.

Almeida B.A., Mostafavi A., 2016. Resilience of infrastructure systems to sea-level rise in coastal areas: impacts, adaptation measures, and implementation challenges, Sustainability, 8(11), 1115. https://doi.org/10.3390/su8111115.

Anthoff D., Nicholls R.J., Tol R.S.J., Vafeidis A.T., 2006. Global and regional exposure to large rises in sea-level: a sensitivity analysis. Tyndall Centre for Climate Change Research, 96, 31.

Baede A.P.M., 2007. Annex I glossary. In Climate Change 2007: The Physical Science Basis. Contribution of Wo/rking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L.). Cambridge University Press, Cambridge, 941-954.

Barnard P.L., et al., 2015. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillication. Nature Geoscience, 8 (September), 801-808. https://doi.org/10.1038/NGEO2539

Becker M., Meyssignac B., Letetrel C., Llovel W., Cazenave A., Delcroix T., 2012. Sea level

variations at tropical Pacific islands since 1950. Global and Planetary Change, 80-81, 85-98. https://doi.org/10.1016/j.gloplacha.2011.09.004

Burn D.H., Hannaford J., Hodgkins G.A., Whitfield P.H., Thorne R., Marsh T., 2012. Reference hydrologic networks II. using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrol. Sci. J., 57, 1580-1593. Doi: 10.1080/02626667.2012.728705.

Ca V.T., 2017. A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam. Climate, 5, 36. https://doi.org/10.3390/cli5020036.

Cazenave A., et al., 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10, 1551-1590. https://doi.org/10.5194/essd-10-1551-2018.

Chandler R.E., Scott E.M., 2011. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences. John Wiley. Chichester, U. K., 368p.

Chebana F., Aissia M.A.B., Ouarda T.B.M.J., 2017. Multivariate shift testing for hydrological variables, review, comparison and application. J. Hydrol., 548, 88-103. Doi: 10.1016/j.jhydrol.2017.02.033.

Church J.A., White N.J., 2006. A 20th century acceleration in global sea-level rise. Geophys Res Lett, 33: L10602. Doi: 10.1029/2005GL024826.

Church J.A, Clark P.U., Cazenave A., Gregory J.M., Jevrejeva S., Levermann A., Merrifield M.A., Milne G.A., Nerem R.S., Nunn P.D., Payne A.J., Pfeffer W.T., Stammer D., Unnikrishnan A.S., 2013. Sea Level Change In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed T F Stocker et al. (Cambridge: Cambridge University Press).

Cogley J.G., 2009. Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50, 96-100. https://doi.org/10.3189/172756409787769744.

Dasgupta S., Laplante B., Meisner C., 2009. The impact of sea level rise on developing countries: a comparative analysis. Clim Change, 93(3), 379-388. Doi: 10.1007/s10584-008-9499-5.

Ding X., Zheng D., Chen Y., Zhao J., Li Z., 2001. Sea level changes in Hong Kong from tide gauge measurements of 1954-1999. J. Geodesy, 74, 683-689. https://doi.org/10.1007/s001900000128.

Domingues C.M., Church J.A., White N.J., Gleckler P.J., Wijffels S.E., Barker P.M., Dunn J.R., 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 1090-1093. Doi: 10.1038/nature07080.

Dong J., Crow W.T., Duan Z., Wei L., Lu Y., 2019. A double instrumental variable method for geophysical product error estimation. Remote Sens. Environ., 225, 217-228. Doi: 10.1016/j.rse.2019.03.003.

Douglas B.C., 2001. Sea Level Change in the Era of the Recording Tide Gauge. In: Douglas, B., et al., Eds., Sea Level Rise: History and Consequences, Academic, San Diego, 37-64. https://doi.org/10.1016/S0074-6142(01)80006-1.

Douglas E.M., Vogel R. M., Kroll C.N., 2000. Trends in floods and low flows in the United States: impact of spatial correlation. J. Hydrol., 240, 90-105.

Doi: 10.1016/S0022-1694(00)00336-X.

Duan Z., Tuo Y., Liu J., Gao H., Song X., Zhang Z., 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol., 569, 612-626. Doi: 10.1016/j.jhydrol.2018.12.026

Enfield D.B., Allen J.S., 1980. On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557-578.

Fitzgerald D.M., Fenster M.S., Argow B.A., Buynevich I.V.,2008. Coastal impacts due to sea level rise, Annu. Rev. Earth Planet. Sci., 36, 601-647. https://doi.org/10.1146/annurev.earth.35.031306.140139.

Gao H., Birkel C., Hrachowitz M., Tetzlaff D., Soulsby C., Savenije H.H.G., 2019. A simple topography-driven and calibration-free runoff generation module. Hydrol. Earth Syst. Sci., 23, 787-809. Doi: 10.5194/hess-23-787-2019.

Genes L.S., Montoya R.D., Osorio A.F., 2021. Costal sea level variability and extreme events in Mo˜nitos, Cordoba, Colombian Caribbean Sea. Continental Shelf Research, 228, 104489. https://doi.org/10.1016/j.csr.2021.104489.

Gregory J.M., Lowe J.A., Tett S.F.B., 2006. Simulated global-mean sea-level changes over the last half-millenium. J. Clim., 19, 4576-4591. https://doi.org/10.1175/JCLI3881.1.

Güner B.Ü., 2017. Trend analysis of precipitation and drought in the Aegean region, Turkey: Trend analysis of precipitation and drought, Meteorological Applications, 24(2), 239-249. Available from: https://doi.org/10.1002/met.1622.

Hamed K.H., 2007. Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resour. Res., 43, 797-809.

Doi: 10.1029/2006WR005111.

Hamed K.H., Rao A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X.

Han W., et al., 2019. Impacts of basin-scale climate modes on coastal sea level: a review. Surv. Geophys., 40(6), 1493-1541.

Helsel D., Hirsch R., 1992. Statistical Methods in Water Resources. Amsterdam: Elsevier.

Hirsch R.M., Slack J.R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20, 727-732. Doi: 10.1029/WR020i006p00727.

Hirsch R.M., Slack J.R., Smith R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107-121. Doi: 10.1029/WR018i001p00107.

Huan P.V., 2016. Some parameters of the changeability of the sea levels along the Vietnam coast. VNU Journal of Science: Earth and Environmental Sciences, 32(3S), 90-94 (in Vietnam).

Huang N.E., Wu M.L., Qu W., Long S.R., Shen S.S.P., Zhang J.E., 2003. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Model. Bus., 19, 245-268. https://doi.org/10.1002/asmb.501.

IPCC, 2001. Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, Cambridge, U. K.

IPCC, 2007. Climate change 2007. In: Solomon S, Qin D, Manning M et al (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp.

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press.

Kendall M.G.,1975. Rank correlation methods. 4th Edition, Charles Griffin, London, UK, 272.

Kisi O., 2015. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol., 527, 1123-1129. https://doi.org/10.1016/j.jhydrol.2015.06.009.

Lefebvre J.P., Ouillon S., Vinh V.D., Arfi R., Panche J.Y., Mari X., Van Thuoc C., Torréton J.P., 2012. Seasonal variability of cohesive sediment aggregation in the Bach Dang-Cam Estuary, Haiphong (Vietnam). Geo-Mar. Lett. 2012, 32, 103-121. http://dx.doi.org/10.1007/s00367-011-0273-8.

Mann H.B., 1945. Nonparametric tests against trend. Econometrica, 13, 245-259.

Miles E.R., Spillman C.M., Church J.A., McIntosh P. C., 2014. Seasonal prediction of global sea level anomalies using an oceanatmosphere dynamical model. Climate Dynamics, 1-15. https://doi.org/10.1007/s00382-013-2039-7.

Milne G.A., W.R. Gehrels, C.W. Hughes, M.E. Tamisiea, 2009. Identifying the causes of sea-level change. Nature Geosci., 2, 471-478.

MONRE, 2016. Climate change and sea level rise scenarios for Viet Nam. Hanoi.

Moon J.H., Song Y.T., Lee H.K., 2015. PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific. J Geophys Res: Oceans 120, 8229-8237. https://doi.org/10.1002/2015JC011139.

Muis S., Haigh I.D., Guimarães Nobre G., Aerts J.C.J.H., Ward P.J., 2018. Influence of El Niño-Southern Oscillation on global coastal flooding. Earth’s Future, 6, 1311-1322. https://doi. org/10.1029/2018EF000909.

Nerem R.S., Chambers D.P., Choe C., Mitchum G.T., 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Marine Geodesy, 33(1), 435-446.

Nicholls R.J., Wong P.P., Burkett V.R., Codignotto, J.O., John H., McLean R.F., Ragoonaden, S., Woodroffe C.D., 2007. Coastal systems and low-lying areas, in Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C. E. Hanson, Cambridge Univ. Press, Cambridge, U. K.

Nicholls R.J.,Cazenave A., 2010. Sea-level rise and its impact on coastal zones, Science, 328(18), 1517-1520. http://dx.doi.org/10.1126/science.1185782.

NOAA, 2020. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Access on December 31, 2020.

Oerlemanns J., Dyurgerov M., Van de Wal R.S.W., 2007. Reconstructing the glacier contribution to sea-level rise back to 1850, The Cryosphere, 1, 59-65. https://doi.org/10.5194/tc-1-59-2007.

Ozgenc Aksoy, A., 2017. Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea. Theor Appl. Climatol., 129, 129-137. https://doi.org/10.1007/s00704-016-1759-0.

Öztopal A., Şen Z., 2017. Innovative Trend Methodology Applications to Precipitation Records in Turkey. Water Resour. Manag., 31, 727-737. https://doi.org/10.1007/s11269-016-1343-5.

Rilling G., Flandrin P., Goncalves P., 2003. On Empirical Mode Decomposition and Its Algorithms. IEEE-EURASIP Workshop on Nonlinear Signal Image Process. NSIP-03. Grado Italy.

Sang Y.F., Wang Z., Liu C., 2014. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol., 510, 293-298. Doi: 10.1016/j.jhydrol.2013.12.039.

Sen P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379. https://doi.org/10.2307/2285891.

Serinaldi F., Kilsby C.G., Lombardo F., 2018. Untenable nonstationarity: an assessment of the fitness for purpose of trend tests in hydrology. Adv.Water Resour., 111, 132-155. Doi: 10.1016/j.advwatres.2017.10.015.

Shadmani M., Marofi S., Roknian M., 2012. Trend Analysis in Reference Evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour Manage, 26, 211-224. Doi: 10.1007/s11269-011-9913-z.

Small C., Nicholls R.J., 2003. A global analysis of human settlement in coastal zones, J. Coastal Res., 19(3), 584-599. https://www.jstor.org/stable/4299200.

State Oceanic Administration, 2019. China Sea Level Bulletin, State Oceanic Administration, Beijing, China, 2020.

Theil H., 1950. A rank-invariant method of linear and polynomial regression analysis I, II and III. Nederl. Aka. Wetensch., 53, 386-392.

Tuong N.T., 2006. Sea level measurement and sea level rise in Vietnam. Marine Hydrometeorological Centre, Vietnam.

Vinh V.D, Thanh T.D., 2014. Characteristics of current variation in coastal area of red river delta - results of research applied the 3D numerical model. Journal of Marine Science and Technology, 14(2), 139-148.

Vinh V.D., Ouillon S., 2021. The double structure of the Estuarine Turbidity Maximum in the Cam-Nam Trieu mesotidal tropical estuary, Vietnam, Marine Geology, 442, Article 106670. Doi: 10.1016/j.margeo.2021.106670.

Vinh V.D., Hai N.M., 2020. Coastal zones of the Red river delta and Yangtze river delta. Vietnam Journal of Marine Science and Technology, 19(4), 449-461. https://doi.org/10.15625/1859-3097/12651.

Vinh V.D., Ouillon S., Thanh T.D., Chu L.V., 2014. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci., 18, 3987-4005. Doi: 10.5194/hess-18-3987-2014.

Vinh V.D., Ouillon S., Uu D.V., 2018. Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water 2018, 10, 68. http://dx.doi.org/10.3390/w10010068.

Vinh V.D., Uu D.V., 2013. The influence of wind and oceanographic factors on characteristics of suspended sediment transport in Bach Dang estuary. J. Mar. Sci. Technol., 3, 216-226.

Vu Duy V., Ouillon S., Nguyen Minh H., 2022. Sea surface temperature trend analysis by Mann-Kendall test and sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 1995-2020. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/16874.

Wahl T., Jensen J., Frank T., Haigh I.D., 2011. Improved estimates of mean sea level changes in the German Bight over the last 166 years, Ocean Dyn., 61, 701-715. Doi:10.1007/s10236-011-0383-x.

Wang H., Liu K., Wang A., Feng J., Fan W., Liu Q., Xu Y., Zhang Z., 2018b. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea. Ocean Dynamics, 68, 485-495. https://doi.org/10.1007/s10236-018-1144-x

Wang L., Li Q., Mao X.Z., Bi H., Yin P., 2018a. Interannual Sea level variability in the pearl river Estuary and its response to El Niño-Southern Oscillation. Global Planet. Change, 162, 163-174. Doi: 10.1016/j.gloplacha.2018.01.007.

Wang S., Zuo H., Yin Y., Hu C., Yin J., Ma X., 2019. Interpreting rainfall anomalies using rainfall’s nonnegative nature. Geophys. Res. Lett. 46, 426-434. Doi: 10.1029/2018GL081190.

Webber J., Hawkins C., 1980. Statistical Analysis Application to Business and Economics, 626. Harper and Row, New York.

Webster P.J., Yang S., 1992. Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926

White N.J., Church J.A., Gregory J.M., 2005, Coastal and global averaged sea level rise for 1950 to 2000, Geophys. Res. Lett., 32, L01601. Doi: 10.1029/2004GL021391.

Wu H., Qian H., 2017. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol., 37, 2582-2592. https://doi.org/10.1002/joc.4866.

Wu Z., Huang N.E., 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460, 1597-1611.

Zhang X., Church J.A., 2012. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophysical Research Letters, 39, L21701. https://doi.org/10.1029/2012GL053240.

Downloads

Published

02-03-2022

How to Cite

Nguyen Minh, H., Ouillon, S., & Vu Duy, V. (2022). Sea-level rise in Hai Phong coastal area (Vietnam) and its response to ENSO - evidence from tide gauge measurement of 1960-2020. Vietnam Journal of Earth Sciences, 44(1), 109–126. https://doi.org/10.15625/2615-9783/16961