Sea surface temperature trend analysis by Mann-Kendall test and sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 1995-2020

Vu Duy Vinh, Sylvain Ouillon, Nguyen Minh Hai
Author affiliations

Authors

  • Vu Duy Vinh Institute of Marine Environment and Resources, VAST, Haiphong City 04216, Vietnam
  • Sylvain Ouillon 1-UMR LEGOS, University of Toulouse, IRD, CNES, CNRS, UPS, 14 avenue Edouard Belin, 31400 Toulouse, France; 2-Department Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), VAST, Hanoi 100000, Vietnam
  • Nguyen Minh Hai 1-Institute of Marine Environment and Resources, VAST, Haiphong City 04216, Vietnam; 2-Graduate University of Science and Technology, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/16874

Keywords:

sea surface temperature, warming, trend, Mann-Kendall, Sen slope, ENSO, Hai Phong

Abstract

Based on the Mann-Kendall test and Sen’s slope method, this study investigates the monthly, seasonal, and annual sea surface temperature (SST) trends in the coastal area of Hai Phong (West of Tonkin Gulf) based on the measurements at Hon Dau Station from 1995 to 2020. The results show a sea surface warming trend of 0.02°C/year for the period 1995-2020 (significant level α = 0.1) and of 0.093°C/year for the period 2008-2020 (significant level α = 0.05). The monthly SSTs in June and September increased by 0.027°C/year and 0.036°C/year, respectively, for the period 1995-2020, and by 0.080°C/year and 0.047°C/year, respectively, for the period 2008-2020. SST trends in winter, summer, and other months were either different for the two periods or not significant enough. This may be due to the impact of ENSO, which caused interannual SST variability in the Hai Phong coastal with two intrinsic mode functions (IMF) signals a period of ~2 (IMF3) and ~5.2 years cycle (IMF4). A combination of these signals had a maximum correlation of 0.22 with ONI (Oceanic Niño Index) delayed by 8 months. ENSO events took ~8 months to affect SST at Hai Phong coastal area for 1995-2020 and caused a variation of SST within 1.2°C.

Downloads

Download data is not yet available.

References

ADB, 2013. Vietnam: Environment and Climate Change Assessment. https://www.adb.org/documents/viet-nam-environment-and-climate-change-assessment.

Alemu Z.A., Dioha M.O., 2020. Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia. Environ Syst. Res., 9, 27, https://doi.org/10.1186/s40068-020-00190-5.

Ali R., Kuriqi A., Abubaker S., Kisi O., 2019. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water, 11(9), 1855. https://doi.org/10.3390/w11091855.

Anghileri D., Pianosi F., Soncini-Sessa R., 2014. Trend detection in seasonal data: From hydrology to water resources. J. Hydrol., 511, 171-179. https://doi.org/10.1016/j.jhydrol.2014.01.022.

Burn D.H., Hannaford J., Hodgkins G.A., Whitfield P.H., Thorne R., Marsh T., 2012. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrol. Sci. J., 57, 1580-1593. Doi: 10.1080/02626667.2012.728705.

Ca V.T., 2017. A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Vietnam. Climate, 5(2), 36. https://doi.org/10.3390/cli5020036.

Chandler R.E., E.M. Scott, 2011. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences. John Wiley. Chichester, U.K., 368p.

Charles O., 2016. Statistical Uncertainty in Hydrometeorological Trend Analyses. Advances in Meteorology. Article ID 8701617, 26p. https://doi.org/10.1155/2016/8701617.

Chung T.V., Long B.H., 2016. Effects of temperature field and abnormal variations of sea water level in east Vietnam sea in relationship to global climate change. Vietnam Journal of Marine Science and Technology, 16(3), 255-266. https://doi.org/10.15625/1859-3097/16/3/7533.

Davis J.C., 2002. Statistics and Data Analysis in Geology, Third Edition. John Wiley and Sons. New York.

Ding X., Zheng D., Chen Y., Zhao J., Li Z., 2001. Sea level changes in Hong Kong from tide gauge measurements of 1954-1999. J. Geodesy, 74, 683-689. https://doi.org/10.1007/s001900000128. Doi: 10.1016/j.jhydrol.2018.12.026.

Dong J., Crow W.T., Duan Z.,Wei L., Lu Y., 2019. A double instrumental variable method for geophysical product error estimation. Remote Sens. Environ., 225, 217-228. Doi: 10.1016/j.rse.2019.03.003.

Duan Z., et al., 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol., 569, 612-626.

Duy Vinh V., Ouillon S., Van Uu D., 2018 Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water, 10, 68. http://dx.doi.org/10.3390/w10010068.

EPA, 2012. 5.3 Temperature. In Water: Monitoring and Assessment. Retrieved from http://water.epa.gov/type/rsl/monitoring/vms53.cfm.

Gao H., Birkel C., Hrachowitz M., Tetzlaff D., Soulsby C., Savenije H.H.G., 2019. A simple topography-driven and calibration-free runoff generation module. Hydrol. Earth Syst. Sci., 23, 787-809. Doi: 10.5194/hess-23-787-2019.

Genes L.S., Montoya R.D., Osorio A.F., 2021. Costal sea level variability and extreme events in Mo˜nitos, Cordoba, Colombian Caribbean Sea. Continental Shelf Research, 228, 104489. https://doi.org/10.1016/j.csr.2021.104489.

Groves C.R., Game E.T., Anderson M.G., Cross M., Enquist C., Ferdaña Z., Girvetz E., Gondor A., Hall K.R., Higgins J., Marshall R., Popper K., Schill S., Shafer S.L., 2012. Incorporating climate change into systematic conservation planning. Biodivers. Conserv., 21, 1651-1671. https://doi.org/10.1007/s10531-012-0269-3.

Güçlü Y.S., 2018. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. Journal of Hydrology, 566, 685-704. https://doi.org/10.1016/j.jhydrol.2018.09.034.

Ha D.T., Ouillon S., Vinh G.V., 2018. Water and suspended sediment budgets in the lower Mekong from high-frequency measurements (2009-2016). Water, 10, 846. Doi: 10.3390/w10070846.

Hirsch R.M., Slack J.R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20, 727-732. Doi: 10.1029/WR020i006p00727.

Hirsch R.M., Slack J.R., Smith R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107-121. Doi: 10.1029/WR018i001p00107. https://doi. org/10.1029/2020GL091753.

Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.C., Tung C.C., Liu H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. London A, 454, 903-995.

Huang N.E., Wu M.L., Qu W., Long S.R., Shen S.S.P., Zhang J.E., 2003. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Model. Bus., 19, 245-268. https://doi.org/10.1002/asmb.501.

Huy L.Q., Hien N.X., Thuc T., Dat P.T., 2017b. Analysis of the variation in sea surface temperatures and the influence of ENSO in the coastal region of the south central of Viet Nam. Journal of Climate Change Science, 1, 67-74 (in Vietnamese).

Huy L.Q., Thuc T., Hien N.X., Uu D.V, 2017a. Effects of ENSO on the intraseasonal oscillations of sea surface temperature and wind speed along Vietnam’s coastal areas. Vietnam Journal of Science, Technology and Engineering, 59(3), 85-90. https://doi.org/10.31276/VJSTE.59(3).85.

Kendall M.G., 1975. Rank correlation methods. 4th Edition, Charles Griffin, London.

Kim S., An S., 2021. Seasonal Gap Theory for ENSO Phase Locking, Journal of Climate, 34(14), 5621-5634. https://doi.org/10.1175/JCLI-D-20-0495.1.

Kisi O., 2015. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol., 527, 1123-1129. https://doi.org/10.1016/j.jhydrol.2015.06.009.

Klein S.A., Soden B.J., Lau N.C., 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12(4), 917-932. https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

Kundzewicz Z.W., Robson A.J., 2004. Change detection in hydrological records a review of the methodology. Hydrological Sciences Journal, 49(1), 7-20. https://doi.org/10.1623/hysj.49.1.7.53993.

Khaliq M.N., Ouarda T.B.M.J., Gachon P., Susham L.A., St-Hilaire A., 2009. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. Journal of Hydrology, 368(1-4), 117-130. https://doi.org/10.1016/j.jhydrol.2009.01.035.

Lefebvre J.P., Ouillon S., Vinh V.D., Arfi R., Panche J.Y., Mari X., Van Thuoc C., Torréton J.P., 2012. Seasonal variability of cohesive sediment aggregation in the Bach Dang-Cam Estuary, Haiphong (Vietnam). Geo-Mar. Lett., 32, 103-121. http://dx.doi.org/10.1007/s00367-011-0273-8.

Minh N.N., Marchesiello P., Lyard F., Ouillon S., Cambon G., Allain D., Van Uu D., 2014. Tidal characteristics of the Gulf of Tonkin. Cont. Shelf Res., 91, 37-56. https://doi.org/10.1016/j.csr.2014.08.003.

MONRE, 2016. Climate change and sea level rise scenarios for Viet Nam. Hanoi.

NOAA National Centers for Environmental Information, 2021. State of the Climate: Global Climate Report for Annual 2020, published online January 2021, retrieved on October 7, 2021 from https://www.ncdc.noaa.gov/sotc/global/202013.

NOAA, 2020. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Access on December 31, 2020.

O'Connor M.I., Bruno J.F., Gaines S.D., Halpern B.S., Lester S.E., Kinlan B.P., Weiss J.M., 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci U S A. 2007 Jan 23, 104(4), 1266-71. Doi: 10.1073/pnas.0603422104. Epub 2007 Jan 9. PMID: 17213327; PMCID: PMC1764863.

Ozgenc Aksoy A., 2017. Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea. Theor Appl Climatol, 129, 129-137. https://doi.org/10.1007/s00704-016-1759-0.

Pasquero C., 2008. Water masses: Conservation of heat and salt. Upper, intermediate waters. In ESS 130: Physical Oceanography. Retrieved from http://www.ess.uci.edu/~cpasquer/classes/ess130/notes/lec18.pdf.

Pohlert T., 2020. Non-Parametric Trend Tests and Change-Point Detection [R package trend version 1.1.4]. https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf.

Rilling G., Flandrin P., Goncalves P., 2003. On Empirical Mode Decomposition and Its Algorithms. IEEE-EURASIP Workshop on Nonlinear Signal Image Process. NSIP-03. Grado Italy.

Sang Y.-F., Wang Z., Liu C., 2014. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol., 510, 293-298. Doi: 10.1016/j.jhydrol.2013.12.039.

Scholes I.J., et al., 2014. Terrestrial and inland water systems, in Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the 5th Assessment Report of the IPCC, Cambridge University Press, NY, 271-359.

Sen P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379. https://doi.org/10.2307/2285891.

Şen Z., 2012. Innovative trend analysis methodology. J. Hydrol. Eng., 17, 1042-1046. Doi: 10.1061/(ASCE)HE.1943-5584.0000556.

Tosunoglu F., Kisi O., 2017. Trend Analysis of Maximum Hydrologic Drought Variables Using Mann-Kendall and Şen’s Innovative Trend Method. River Res. Appl., 33, 597-610. https://doi.org/10.1002/rra.3106.

Thanh T.D., San B.Q., Can N.V., Lan T.D., Quan N.V., Dieu L.V., Thu N.T., Tu T.A., Anh N.T.K, 2015. Nature and environment in Haiphong coastal zone. ISBN: 978-604-913-396-1. Published by Publishing House for Science and Technology. Vietnam Academy of Science and Technology (VAST) (in Vietnamese).

Vinh V.D., Thanh T.D., 2014. Characteristics of current variation in coastal area of red river delta - results of research applied the 3D numerical model. Journal of Marine Science and Technology, 14(2), 139-148.

Vinh V.D., Ouillon S., 2021. The double structure of the Estuarine Turbidity Maximum in the Cam-Nam Trieu mesotidal tropical estuary, Vietnam, Marine Geology, 442, 106670. Doi: 10.1016/j.margeo.2021.106670.

Vinh V.D., Ouillon S., Thanh T.D., Chu L.V., 2014. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci., 18, 3987-4005. https://doi.org/10.5194/hess-18-3987-2014.

Vinh V.D., Uu D.V., 2013. The influence of wind and oceanographic factors on characteristics of suspended sediment transport in Bach Dang estuary. J. Mar. Sci. Technol., 3, 216-226.

Wahl T., J. Jensen, Frank T., Haigh I.D., 2011. Improved estimates of mean sea level changes in the German Bight over the last 166 years, Ocean Dyn., 61, 701-715. Doi: 10.1007/s10236-011-0383-x.

Wang J., et al., 2021. Changing lengths of the four seasons by global warming. Geophysical Research Letters, 48, e2020GL091753.

Wang L., Li Q., Mao X.Z., Bi H., Yin P., 2018. Interannual Sea level variability in the pearl river Estuary and its response to El Ni˜no-southern oscillation. Global Planet. Change, 162, 163-174. Doi: 10.1016/j.gloplacha.2018.01.007.

Wang W., Chen Y., Becker S., Liu B., 2015. Variance correction prewhitening method for trend detection in autocorrelated data. Journal of Hydrologic Engineering, 20(12), 04015033. Doi: 10.1061/(ASCE)HE.1943-5584.0001234.

Watson J.E., Rao M., Ai-Li K., Yan X., 2012. Climate change adaptation planning for biodiversity conservation: A review. Adv. Clim. Change Res., 3, 1-11. Available at: https://www.scipedia.com/public/Watson_et_al_2015a.

Wetzel R.G., 2001. Limnology: Lake and River Ecosystems (3rd ed.). San Diego, CA: Academic Press.

Wu Z., Huang N.E., 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460, 1597-1611.

Yue S., P. Pilon, G. Cavadias., 2002. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1-4), 254-271. https://doi.org/10.1016/S0022-1694(01)00594-7.

Zakwan M., Ahmad Z., 2021. Trend analysis of hydrological parameters of Ganga River. Arab J. Geosci., 14, 163. https://doi.org/10.1007/s12517-021-06453-4.

Downloads

Published

12-01-2022

How to Cite

Vu Duy, V., Ouillon, S. ., & Nguyen Minh, H. (2022). Sea surface temperature trend analysis by Mann-Kendall test and sen’s slope estimator: a study of the Hai Phong coastal area (Vietnam) for the period 1995-2020. Vietnam Journal of Earth Sciences, 44(1), 73–91. https://doi.org/10.15625/2615-9783/16874

Most read articles by the same author(s)