Geochemistry and mineralogy of the Truc Thon Clay, Hai Duong Province, North Vietnam: implication for paleoclimatic and provenance analysis

Hoang Van Tha, Shahid Iqbal, Urszula Czarniecka, Anna Wysocka, Phan Dong Pha, Nguyen Quoc Cuong, Vu Van Ha, Dang Minh Tuan
Author affiliations


  • Hoang Van Tha Institute of Geological Sciences, VAST, Hanoi, Vietnam
  • Shahid Iqbal Department of Earth Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
  • Urszula Czarniecka Department of Geosciences, University of Oslo, P.O Box 1047 Blindern, 0316 Oslo, Norway
  • Anna Wysocka Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, Warsaw, Poland
  • Phan Dong Pha Institute of Marine Geology and Geophysics, VAST, Hanoi, Vietnam
  • Nguyen Quoc Cuong Institute of Geological Sciences, VAST, Hanoi, Vietnam
  • Vu Van Ha Institute of Geological Sciences, VAST, Hanoi, Vietnam
  • Dang Minh Tuan Institute of Geological Sciences, VAST, Hanoi, Vietnam



Truc Thon clay, bulk-rock geochemistry, clay mineralogy, paleoclimate, provenance


During the Miocene-Pleistocene, generally sub-tropical to tropical warm and humid paleoclimate prevailed in Southeast Asia with a gradual cooling trend. The Truc Thon clay (TTC) mine presents interesting outcrops for sedimentological and provenance analysis. The present study uses results of geological investigation in 16 outcrops and wells at the clay mine Truc Thon. The TTC has lens-shaped geometry, filled with two clay bodies, including grey-white clay and multicolor clay. Bulk mineralogy indicates the predominance of quartz and a relatively high amount of pyrophyllite. Clay mineralogy shows the presence of main kaolinite, followed by illite and mixed-layer illite-smectite. These may interpret a warm, humid paleoclimatic condition in the source areas. Illite may be inherited from basement rocks. The bulk rock geochemistry supports intense chemical weathering with the Chemical Index of Alteration (CIA) in the TTC ranged ca. 80.6-98 (average = 90.4). In combination with the geochemical proxies and the mineralogical composition of the TTC, the chemical weathering intensity indicated warm/hot, semi-humid/humid tropical paleoclimate in the source area. A combination of mineralogical and geochemical analyses with regional geological features show that the Hon Gai Triassic rocks are the main source for the TTC. Source materials are originally related to silicic rocks of granitic-granodioritic composition. Paleoclimatic conditions favored intense chemical weathering of the Hon Gai Triassic rocks and surrounding rocks, creating a ceramic mine of great industrial value.


Download data is not yet available.


Akarish A.I.M., El-Gohary A.M., 2008. Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting. Journal of African Earth Sciences, 52, 43-54.

Bahlburg H., Dobrzinski N., 2011. A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geol. Soc. Lon. Memoirs, 36(1), 81-92.

Basu A., 1976. Petrology of Holocene fluvial sand derived from plutonic source rocks: Implication to paleoclimatic interpretation. J. Sed. Petrol., 46, 694-709.

Bhatia M.R., Crook K.A.W., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193.

Böhme M., Prieto J., Schneider S., Hung N.V., Quang D.D., Tran D.N., 2011. The Cenozoic on-shore basins of Northern Vietnam: Biostratigraphy, vertebrate and invertebrate faunas. Journal of Asian Earth Sciences, 40, 672-687.

Boynton W.V., 1985. Cosmochemistry of the rare earth elements: meteorite studies. In Henderson P. (ed.): Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.

Bracciali L., Marroni M., Pandolfi L., Rocchi S., 2007. Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In Arribas J., Critelli S., Johnsson M.J. (eds.): Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of America Special Paper, 420, 73-93.

Cox R., Low D.R., Cullers R.L., 1995.The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica and Cosmochimica Acta, 59, 2919-2940.

Cullers R.L., 2002: Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305-327.

Cullers R.L., Podkovyrov V.N., 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157-183.

Czarniecka U., Haile B.G., Braathen A., Krajewski K.P., Kristoffersen M., Jokubauskas P., 2020. Petrography, bulk-rock geochemistry, detrital zircon U-Pb geochronology and Hf isotope analysis for constraining provenance: An example from Middle Triassic deposits (Bravaisberget Formation), Sørkappøya, Svalbard. Norwegian Journal of Geology, 100, 202017.

Dickinson W.R., Valloni R., 1980. Plate settings and provenance of sands in modern ocean basins. Geology, 8, 82-86.

Diet D. (ed.), 1975. Report on Establishing of the geological sketch of Dong Trieu area, Quang Ninh province, at 1:50,000 scale. General Department of Geology of Vietnam, Hanoi (in Vietnamese).

Fedo C.M., Nesbitt H.W., Young G.M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions andprovenance. Geology, 23, 921-924.

Garcia D., Fonteilles M., Moutte J., 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411-422.

Garver J.I., Royce P.R., Smick T.A., 1996. Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-gained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106.

Goldberg K., Humayun M., 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 175-183.

Gromet L.P., Haskin L.A., Korotev R.L., Dymek R.F., 1984. The “North American shale composite”: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48(12), 2469-2482.

Harnois L., 1988. The CIW index; a new chemical index of weathering. Sedimentary Geology, 55, 319-322.

Hiscott R.N., 1984. Ophiolitic source rocks for Taconic-age flysch: trace element evidence. Geological Society of America Bulletin, 95, 1261-1267.

Hofer G., M. Wagreich, S. Neuhuber, 2013. Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers, 4, 449-468.

Hofmann P., Ricken W., Schwark L., Leythaeuser D., 2001. Geochemical signature and related climatic-oceanographic processes for early Albian black shales: site 417D, North Atlantic Ocean. Cretaceous Research, 22, 243-257.

Huyen N.X. (ed.), 1996. Report on investigating the quality and reserves of clay mineral in the Red River Plain: Orienting exploitation and rational use of raw materials. Institute of Geological Sciences, Vietnam Academy of Science and Technology, Hanoi (in Vietnamese).

Ingersoll R.V., Suczek C.A., 1979. Petrology and provenance of Neogene sand from Niconbar and Bengal Fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49, 1217-1228.

Iqbal S., Wagreich M., Jan I., Kuerschner W. M., Gier S., Bibi M., 2019. Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Global and Planetary Change, 172, 15-32.

Ky H.N. (ed.), 1999. Geology and mineral resources of the Hai Phong Map sheet, with the Geological Map of the Ha Long Sheet at 1:200,000 scale. General Department of Geology and Minerals of Vietnam, Hanoi (in Vietnamese).

Lan T.T., Duong N.A., Anh P.L., Man T.T., 2019. Research on fabrication of non-calcined geopolymer ceramics from kaolin Tung Ba, ViXuyen, Ha Giang. Vietnam Journal of Earth Sciences, 41(4), 388-402.

Lee Y.I., 2002. Provenance derived from the geochemistry of late Paleozoic-early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149, 219-235.

Long N.V. (ed.), 2006. Report on exploration of the refractory clay in the Truc Thon area, Cong Hoa commune, Chi Linh district, Hai Duong province. General Department of Geology of Vietnam, Hanoi (in Vietnamese).

Luc V.X. (ed.), 2017. Geological Map F-48-69-D (Pha Lai sheet), at 1:50,000 scale. General Department of Geology and Minerals of Vietnam, Hanoi (in Vietnamese).

Ly P.T., Thuy H.L.T., 2019. Spatial distribution of hot days in north central region, Vietnam in the period of 1980-2013. Vietnam Journal of Earth Sciences, 41(1), 36-45.

Madhavaraju J., González-León C.M., Lee Y.I., Armstrong-Altrin J.S., Reyes-Campero L.M., 2010.Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretaceous Research, 31, 400-414.

Man T.T., Lan T.T., Duong N.A., Anh P.L., 2020. Assessment of the usability of Tam Bo bentonite (Di Linh - Lam Dong for peloid. Vietnam Journal of Earth Sciences, 42(4), 384-394.

McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. In Johnsson M.J., Basu A. (eds.): Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284, 21-40.

McLennan S.M., Taylor S.R., McCulloch M.T., Maynard J.B., 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites-crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050.

Miall A.D., 2006. The Geology of Fluvial Deposits. Springer-Verlag, Berlin, 589pp.

Nesbitt H.W., Young G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinetic consideration. Geochimica et Cosmochimica Acta, 48, 1523-1534.

Nesbitt H.W., Young G.M., McLennan S.M., Keays R.R., 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol., 104(5), 525-542.

Nesbitt H.W., Young G.W., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.

Pettijohn F.J., Potter P.E., Siever R., 1987. Sand and sandstones. 2nd ed., Springer-Verlag, New York, 61pp.

Plank T., Langmuir C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, 145, 325-394.

Potter P.E., Maynard J.B., Depetris P.J., 2005. Mud and mudstones. Springer Science and Business Media, 297pp.

Rahman M.J.J., Suzuki S., 2007. Composition of Neogene shales from the Surma Group, Bengal Basin, Bangladesh: implications for provenance and tectonic setting. Austrian Journal of Earth Sciences, 100, 54-64.

Roser B.P., Korsch R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119-139.

Rudnick R.L., Gao S., 2003. Composition of the continental crust. In Holland H.D., Turekian K.K. (eds.): Treatise on Geochemistry. Elsevier-Pregamon, Oxford-London, 3, 1-64.

Song A., Liu J., Liang S.-Q., Van Do T., Nguyen H.B., Deng W.-Y.-D., Jia L.-B., Del Rio C., Srivastava G., Feng Z., Zhou Z.-K., Huang J., Su T., 2021. Leaf fossils of Sabalites (Arecaceae) from the Oligocene of northern Vietnam and their paleoclimatic implications, Plant Diversity.">

Taylor S.R., McLennan S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312pp.

Tha H.V., Anna W., Cuong N.Q., Thom B.V., Lam D.D., Pha P.D., Huyen N.X., Tuan D.M., Ha V.V., Thanh N.T., Min N.T., Quang N.M., Chi G.T.K., 2019. Preliminary study results on lithofacies and depositional environment in the area of the clay mine of the Truc Thon depression, NE Vietnam. Proceedings of The Third National Conference on Marine Geology, Publishing House for Science and Technology, Hanoi, Vietnam, 171-172.

Ti D.Q. (ed.), 1985. Geological report on meticulous exploration of the refractory clay mine in Truc Thon - Hai Hung. General Department of Geology of Vietnam, Hanoi (in Vietnamese).

Tri T.V., Khuc V. (eds), 2009. Geology and Natural Resources of Vietnam. Natural Science and Technics Publishing House, Hanoi, 589pp.

Tri Van Tran, Michel Faure, Vuong Van Nguyen, Hoang Huy Bui, Michael Bryl Wessel Fyhn, Tuan Quang Nguyen, Claude Lepvrier, Tonny B. Thomsen, Kenichiro Tani, Punya Charusiri, 2020. Neoproterozoic to Early Triassic tectono-stratigraphic evolution of Indochina and adjacent areas: A review with new data. Journal of Asian Earth Sciences, 191, 1-23.

Tuyet N.T., Thanh N.D., Tan P.V., 2019. Performance of seaclid/cordex-sea multi-model experiments in simulating temperature and rainfall in Vietnam. Vietnam Journal of Earth Sciences, 41(4), 374-387.

Wysocka A., Pha P.D., Durska E., Czarniecka U., Thang D.V., Filipek A., Cuong N.Q., Tuan D.M., Huyen N.X., Tha H.V., Staniszewski R.Ł., 2020. The Na Duong Basin (North Vietnam): a key for understanding Paleogene basin evolution in relation to the left-lateral Cao Bang-Tien Yen Fault. Journal of Asian Earth Sciences, 195, 1-20.

Zachos J., Pagani M., Sloan L., Thomas E., Billups K., 2001. Trends, rhythms and aberrations in global climate 65 Ma to Present. Science, 292, 686-693.




How to Cite

Hoang Van, T., Iqbal, S. ., Czarniecka, U., Wysocka, A. ., Phan Dong, P., Nguyen Quoc, C., Vu Van, H., & Dang Minh, T. (2021). Geochemistry and mineralogy of the Truc Thon Clay, Hai Duong Province, North Vietnam: implication for paleoclimatic and provenance analysis. Vietnam Journal of Earth Sciences, 43(4), 524–545.




Most read articles by the same author(s)