Dinoflagellate composition and environmental conditions in the Xuan Dai Bay, South-Central Vietnam

Huynh Thi Ngoc Duyen, Tran Thi Minh Hue, Tran Thi Le Van, Phan Tan Luom, Nguyen Tam Vinh, Nguyen Ngoc Lam, Doan-Nhu Hai
Author affiliations

Authors

  • Huynh Thi Ngoc Duyen Institute of Oceanography, VAST, Vietnam https://orcid.org/0000-0003-0039-5543
  • Tran Thi Minh Hue Institute of Oceanography, VAST, Vietnam
  • Tran Thi Le Van Institute of Oceanography, VAST, Vietnam
  • Phan Tan Luom Institute of Oceanography, VAST, Vietnam; Division of Biology, Faculty of Natural Sciences Teacher Education, Dongthap University, Dong Thap, Vietnam
  • Nguyen Tam Vinh Institute of Oceanography, VAST, Vietnam
  • Nguyen Ngoc Lam Institute of Oceanography, VAST, Vietnam
  • Doan-Nhu Hai Institute of Oceanography, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/18610

Keywords:

Aquaculture, dinoflagellates, mixotrophic dinoflagellates, Xuan Dai Bay.

Abstract

The dinoflagellate community was investigated in association with environmental factors using a data set in April 2021 and April 2022 in Xuan Dai Bay, South-Central Viet Nam. Environmental variables, including physical parameters and dissolved inorganic nutrients, were measured in April 2022. Seventy-three dinoflagellate taxa were identified for Xuan Dai Bay. There was a significant difference in the number and abundance of dinoflagellates between two parts of the bay, the upper and lower bay. The study showed that dinoflagellates favored an area with good water exchange and were less affected by aquaculture activities. Principal component analysis (PCA) was used to explore the relative abundances of different phytoplankton groups, their diversity indices, and environmental variables at the surface and bottom layers of the two parts of the bay. The results showed that dinoflagellates correlated to physical parameters (e.g., PAR, salinity, temperature) at the surface layer and nutrients at the bottom layer. Dinoflagellates and diatoms are mixotrophic and strongly correlated at the bottom layer in Xuan Dai Bay. This strong relationship in the bay was because of the dominance of a heterotrophic genus, Protoperidinium. The present study provided characteristics of the dinoflagellates in Xuan Dai Bay and the possible impacts of environmental parameters on their abundance. The results can be used for further studies and possibly managing of dinoflagellate blooms in coastal waters.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D’Silva, M. S., Anil, A. C., and D’Costa, P. M., 2011. An overview of dinoflagellate cysts in recent sediments along the west coast of India. Indian Journal of Geo-Marine Sciences, 40(5), 697–709.

Figueroa, R. I., Estrada, M., and Garcés, E., 2018. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages. Harmful Algae, 73, 44–57. DOI: https://doi.org/10.1016/j.hal.2018.01.006

Rodríguez–Villegas, C., Díaz, P. A., Salgado, P., Tomasetti, S. J., Díaz, M., Marín, S. L., Baldrich, A. M., Niklitschek, E., Pino, L., Matamala, T., Espinoza, K., and Figueroa, R. I., 2022. The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system. Environmental Pollution, 311, 119901. DOI: https://doi.org/10.1016/j.envpol.2022.119901

Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D., 2004. Dinoflagellates: a remarkable evolutionary experiment. American Journal of Botany, 91(10), 1523–1534. DOI: https://doi.org/10.3732/ajb.91.10.1523

Taylor, F. J. R., Hoppenrath, M., and Saldarriaga, J. F., 2008. Dinoflagellate diversity and distribution. Biodiversity and conservation, 17, 407–418. DOI: https://doi.org/10.1007/s10531-007-9258-3

Ellegaard, M., Dale, B., Mertens, K. N., Pospelova, V., and Ribeiro, S., 2017. Dinoflagellate cysts as proxies for holocene environmental change in estuaries: diversity, abundance and morphology. Applications of Paleoenvironmental Techniques in Estuarine Studies, 295–312. DOI: https://doi.org/10.1007/978-94-024-0990-1_12

Gurdebeke, P. R., Pospelova, V., Mertens, K. N., Dallimore, A., Chana, J., and Louwye, S., 2018. Diversity and distribution of dinoflagellate cysts in surface sediments from fjords of western Vancouver Island (British Columbia, Canada). Marine Micropaleontology, 143, 12–29. DOI: https://doi.org/10.1016/j.marmicro.2018.07.005

Dale, B., 1996. Dinoflagellate cyst ecology: modeling and geological applications. Palynology: Principles and Applications, 3, 1249–1275.

Obrezkova, M. S., Pospelova, V., and Kolesnik, A. N., 2023. Diatom and dinoflagellate cyst distribution in surface sediments of the Chukchi Sea in relation to the upper water masses. Marine Micropaleontology, 178, 102184. DOI: https://doi.org/10.1016/j.marmicro.2022.102184

Holligan, P. M., Maddock, L., and Dodge, J. D., 1980. The distribution of dinoflagellates around the British Isles in July 1977: a multivariate analysis. Journal of the Marine Biological Association of the United Kingdom, 60(4), 851–867. DOI: https://doi.org/10.1017/S0025315400041941

Smayda, T. J., and Reynolds, C. S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of plankton research, 23(5), 447–461. DOI: https://doi.org/10.1093/plankt/23.5.447

Peperzak, L., 2003. Climate change and harmful algal blooms in the North Sea. Acta Oecologica, 24, S139–S144. DOI: https://doi.org/10.1016/S1146-609X(03)00009-2

Spilling, K., and Markager, S., 2008. Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea. Journal of Marine Systems, 73(3–4), 323–337. DOI: https://doi.org/10.1016/j.jmarsys.2006.10.012

Li, Y., Lü, S., Jiang, T., Xiao, Y., and You, S., 2011. Environmental factors and seasonal dynamics of Prorocentrum populations in Nanji Islands National Nature Reserve, East China Sea. Harmful Algae, 10(5), 426–432. DOI: https://doi.org/10.1016/j.hal.2010.08.002

Čalić, M., Carić, M., Kršinić, F., Jasprica, N., and Pećarević, M., 2013. Controlling factors of phytoplankton seasonal succession in oligotrophic Mali Ston Bay (south-eastern Adriatic). Environmental monitoring and assessment, 185, 7543–7563. DOI: https://doi.org/10.1007/s10661-013-3118-2

Spilling, K., Kremp, A., Klais, R., Olli, K., and Tamminen, T., 2014. Spring bloom community change modifies carbon pathways and C: N: P: Chl a stoichiometry of coastal material fluxes. Biogeosciences, 11(24), 7275–7289. DOI: https://doi.org/10.5194/bg-11-7275-2014

Wasmund, N., Kownacka, J., Göbel, J., Jaanus, A., Johansen, M., Jurgensone, I., Lehtinen, S., and Powilleit, M., 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea 1. Principle and handling instruction. Frontiers in Marine Science, 4, 22. DOI: https://doi.org/10.3389/fmars.2017.00022

Zhou, Z. X., Yu, R. C., and Zhou, M. J., 2017. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: a numerical simulation study. Ecological Modelling, 360, 150–162. DOI: https://doi.org/10.1016/j.ecolmodel.2017.06.027

Nohe, A., Goffin, A., Tyberghein, L., Lagring, R., De Cauwer, K., Vyverman, W., and Sabbe, K., 2020. Marked changes in diatom and dinoflagellate biomass, composition and seasonality in the Belgian Part of the North Sea between the 1970s and 2000s. Science of the Total Environment, 716, 136316. DOI: https://doi.org/10.1016/j.scitotenv.2019.136316

Song, Y., Guo, Y., Liu, H., Zhang, G., Zhang, X., Thangaraj, S., and Sun, J., 2022. Water quality shifts the dominant phytoplankton group from diatoms to dinoflagellates in the coastal ecosystem of the Bohai Bay. Marine Pollution Bulletin, 183, 114078. DOI: https://doi.org/10.1016/j.marpolbul.2022.114078

Nguyen-Ngoc, L., Doan-Nhu, H., Phan-Tan, L., Huynh-Thi, D. N., Nguyen-Tam, V., Pham, A. H., Tran-Thi, H. M., Tran-Thi, V. A., and Tester, P., 2022. Seasonal occurrence of the potentially toxic benthic armoured dinoflagellates in Nha Trang Bay, South Central Coast of Viet Nam. Regional Studies in Marine Science, 55, 102627. DOI: https://doi.org/10.1016/j.rsma.2022.102627

Binh, T. V., and Dan, N. D., 2016. Chapter 5. Topographical features, geomorphology, bottom sediments. In: Long, B. H., (ed.), Natural characteristics, environment, resources and sustainable development orientation of the coastal waters of the central south region. Publishing House for Science and Technology, pp. 143–176.

(in Vietnamese).

Fritz, L., and Triemer, R. E., 1985. A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates 1. Journal of phycology, 21(4), 662–664. DOI: https://doi.org/10.1111/j.0022-3646.1985.00662.x

Graham, H. W., and Bronikovsky, N., 1944. The genus Ceratium in the Pacific and northern Atlantic Oceans. Scientific Results Cruise VII. Biological Series, 5, 209.

Abe, T. H., 1981. Studies on the family Peridinidae an unfinished monograph on the armoured dinoflagellata. Publications of the Seto Marine Biological Laboratory. Special Publication Series., 6, 1–409. DOI: https://doi.org/10.5134/176462

Balech, E., 2022. Una especie nueva del género Fragilidium (Dinoflagellata) de la bahía de Chamela, Jalisco, México. Anales del Instituto de Biología, UNAM, Serie Zoología, 58(2), 479–485.

Tomas, C. R. (Ed.), 1997. Identifying marine phytoplankton. Elsevier.

Larsen, J., and Nguyen, N. L., 2004. Potentially toxic microalgae of Vietnamese waters. Copenhagen, Denmark: Council for Nordic Publications in Botany, 140, 5–216.

Nguyen-Ngoc, L., and Larsen, J., 2008. On the genus Alexandrium (Dinoflagellata) in Vietnamese waters:-two new records of A. satoanum and A. tamutum. In Proceedings, International Conference on Harmful Algae. International Society for the Study of Harmful Algae and Intergovernmental Oceanographic Commission of UNESCO, Copenhagen. Moestrup Ø. et al., pp. 216–218.

Nguyen-Ngoc, L., Ho-Van, T., and Larsen, J., 2012. A taxonomic account of Ceratium (Dinoflagellates) in Vietnamese waters. The Thailand Natural History Museum Journal, 6(1), 25–59.

Phan-Tan, L., Nguyen-Ngoc, L., and Doan-Nhu, H., 2016. Species diversity of sections conica and tabulata in the genus Protoperidinium (Dinophyceae) from tropical waters of the South China Sea. Nova Hedwigia, 103(3–4), 515–545. DOI: https://doi.org/10.1127/nova_hedwigia/2016/0369

Phan‐Tan, L., Nguyen‐Ngoc, L., Doan‐Nhu, H., Raine, R., and Larsen, J., 2017. Species diversity of Protoperidinium sect. Oceanica (Dinophyceae, Peridiniales) in Vietnamese waters, with description of the new species P. larsenii sp. nov. Nordic Journal of Botany, 35(2), 129–146. DOI: https://doi.org/10.1111/njb.01230

Truong, H. Q., 1962. Phytoplankton in Nha Trang Bay-1: Bacillariales.-Univerarea de Sai Gon. Annales de la Faculté des Saigon. Contribution, 59, 121–214.

Truong, H. Q., 1963. Phytoplankton in Nha Trang Bay-2. Dinoflagellages.-Institut Océanographique de Nha Trang. Annales de la Faculté des Saigon, 2, 129–176.

Shirota, A., 1966. The plankton of South Vietnam-Freshwater and marine plankton. ION. 464 p.

Licea-Durán, S., Moreno-Ruiz, J. L., Santoyo-Reyes, H., and Figueroa, G., 1995. Dinoflageladas del Golfo de California. Universidad Autónoma de Baja California Sur, Secretaría de Educación Pública, Fondo para la Modernización de la Educación Superior, Programa Interdisciplinario e Insterinstitucional del Mar de Cortés. México, DF.

Guiry, M. D., and Guiry, G. M., 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; accessed March 10, 2023.

Baek, S. H., Shimode, S., and Kikuchi, T., 2008. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of temperature, light intensity and photoperiod. Harmful algae, 7(2), 163–173. DOI: https://doi.org/10.1016/j.hal.2007.06.006

Bockstahler, K. R., and Coats, D. W., 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Marine Biology, 116, 477–487. DOI: https://doi.org/10.1007/BF00350065

Bockstahler, K. R., and Coats, D. W., 1993. Spatial and temporal aspects of mixotrophy in Chesapeake Bay dinoflagellates. Journal of Eukaryotic Microbiology, 40(1), 49–60. DOI: https://doi.org/10.1111/j.1550-7408.1993.tb04881.x

Chang, J., and Carpenter, E. J., 1994. Inclusion bodies in several species of Ceratium Schrank (Dinophyceae) from the Caribbean Sea examined with DNA-specific staining. Journal of plankton research, 16(2), 197–202. DOI: https://doi.org/10.1093/plankt/16.2.197

Faust, M. A., 1998. Mixotrophy in tropical benthic dinoflagellates. Harmful algae, 390–393.

Hansen, P. J., and Tillmann, U., 2020. Mixotrophy among dinoflagellates—Prey selection, physiology and ecological imporance. Dinoflagellates: classification, evolution, physiology and ecological significance. Hauppauge, NY, USA: Nova, 201–60.

Hansen, G., Moestrup, Ø., and Roberts, K. R., 1996. Fine structural observations on Gonyaulax spinifera (Dinophyceae), with special emphasis on the flagellar apparatus. Phycologia, 35(4), 354–366. DOI: https://doi.org/10.2216/i0031-8884-35-4-354.1

Harrison, P. J., Furuya, K., Glibert, P. M., Xu, J., Liu, H. B., Yin, K., Lee, J. H. K., Anderson, D. M., Gowen, R., Al-Azri, A. R., and Ho, A. Y. T., 2011. Geographical distribution of red and green Noctiluca scintillans. Chinese Journal of Oceanology and Limnology, 29, 807–831. DOI: https://doi.org/10.1007/s00343-011-0510-z

Horiguchi, T., 1992. Amphidinium latum Lebour (Dinophyceae), a sand‐dwelling dinoflagellate feeding on cryptomonads. Jpn J. Phycol., 40, 353.

Ishimaru, T., Inoue, H., Fukuyo, Y., Ogata, T., and Kodama, M., 1988. Cultures of Dinophysis fortii and D. acuminata with the cryptomonad, Plagioselmis sp. JSM Mycotoxins, 1988(1Supplement), 19–20. DOI: https://doi.org/10.2520/myco1975.1988.1Supplement_19

Jacobson, D. M., and Anderson, D. M., 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates 1. Journal of Phycology, 32(2), 279–285. DOI: https://doi.org/10.1111/j.0022-3646.1996.00279.x

Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y., and Yih, W. H., 2005. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquatic microbial ecology, 41(2), 131–143. DOI: https://doi.org/10.3354/ame041131

Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y., and Yih, W. H., 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquatic microbial ecology, 40(2), 133–150. DOI: https://doi.org/10.3354/ame040133

Jeong, H. J., Du Yoo, Y., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H., and Yih, W. H., 2005. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquatic Microbial Ecology, 38(3), 249–257. DOI: https://doi.org/10.3354/ame038249

Leles, S. G., Mitra, A., Flynn, K. J., Tillmann, U., Stoecker, D., Jeong, H. J., Burkholder, J., Hansen, P. J., Caron, D. A., Glibert, P. M., Hallegraeff, G., Raven, J. A., Sanders, R. W., and Zubkov, M., 2019. Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 28(4), 418–428. DOI: https://doi.org/10.1111/geb.12853

Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J., and Lee, K., 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae, 49, 10–18. DOI: https://doi.org/10.1016/j.hal.2015.07.010

Löder, M. G. J., Kraberg, A. C., Aberle, N., Peters, S., and Wiltshire, K. H., 2012. Dinoflagellates and ciliates at Helgoland roads, North Sea. Helgoland Marine Research, 66, 11–23. DOI: https://doi.org/10.1007/s10152-010-0242-z

Nishitani, G. O. H., Nagai, S., Sakiyama, S., and Kamiyama, T., 2008. Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton and Benthos Research, 3(2), 78–85. DOI: https://doi.org/10.3800/pbr.3.78

Norris, D. R., 1969. Possible phagotrophic feeding in Ceratium lunula SCHIMPER 1. Limnology and Oceanography, 14(3), 448–449. DOI: https://doi.org/10.4319/lo.1969.14.3.0448

Park, J., Jeong, H. J., Du Yoo, Y., and Yoon, E. Y., 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae, 30, S28–S40. DOI: https://doi.org/10.1016/j.hal.2013.10.004

Qiu, D., Huang, L., Liu, S., and Lin, S., 2011. Nuclear, mitochondrial and plastid gene phylogenies of Dinophysis miles (Dinophyceae): Evidence of variable types of chloroplasts. Plos one, 6(12), e29398. DOI: https://doi.org/10.1371/journal.pone.0029398

Sournia, A., 1978. Phytoplankton manual. UNESCO, Printed in France.

APHA, 2005. Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.

Lê, S., Josse, J., and Husson, F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25, 1–18. DOI: https://doi.org/10.18637/jss.v025.i01

Kassambara, A., and Mundt, F., 2017. Package ‘factoextra’: Extract and Visualize the Results of Multivariate Data Analyses. R Packages. Available online: https://rpkgs. datanovia.com/factoextra/index.html; accessed July 16, 2020.

Margalef, R., 1958. Information theory in biology. General Systems Yearbook, 3, 36–71.

Shannon, C. E., 2001. A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review, 5(1), 3–55. DOI: https://doi.org/10.1145/584091.584093

Flynn, K. J., Mitra, A., Anestis, K., Anschütz, A. A., Calbet, A., Ferreira, G. D., Gypens, N., Hansen, P. J., John, U., Martin, J. L., Mansour, J. S., Maselli, M., Medić, N., Norlin, A., Not, F., Pitta, P., Romano, F., Saiz, E., Schneider, L. K., Stolte, W., and Traboni, C., 2019. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. Journal of Plankton Research, 41(4), 375–391. DOI: https://doi.org/10.1093/plankt/fbz026

Flynn, K. J., and Mitra, A., 2009. Building the “perfect beast”: modelling mixotrophic plankton. Journal of Plankton Research, 31(9), 965–992. DOI: https://doi.org/10.1093/plankt/fbp044

Mitra, A., and Flynn, K. J., 2010. Modelling mixotrophy in harmful algal blooms: more or less the sum of the parts?. Journal of Marine Systems, 83(3–4), 158–169. DOI: https://doi.org/10.1016/j.jmarsys.2010.04.006

Chakraborty, S., Nielsen, L. T., and Andersen, K. H., 2017. Trophic strategies of unicellular plankton. The American Naturalist, 189(4), E77–E90. DOI: https://doi.org/10.1086/690764

Taylor, F. G. R., 1987. Chapter 11: Ecology of dinoflagellates. The Biology of Dinoflagellates, 399–529.

Downloads

Published

21-05-2024

How to Cite

Huynh, T. N. D., Tran, T. M. H., Tran , T. L. V., Phan, T. L., Nguyen, T. V., Nguyen, N. L., & Doan-, N. H. (2024). Dinoflagellate composition and environmental conditions in the Xuan Dai Bay, South-Central Vietnam. Vietnam Journal of Marine Science and Technology, 24(2), 153–166. https://doi.org/10.15625/1859-3097/18610

Issue

Section

Articles

Most read articles by the same author(s)