Proposal for appropriate solutions to reduce influences of sediment dumping activities in the Hai Phong open waters
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/19/2/12567Keywords:
Dumping, suspended sediment, modelling, hydrodynamics, Hai Phong.Abstract
Located in the estuary region of the Red - Thai Binh river system, in which the estuarine turbidity maxima occur, the deposition of navigation in waterways to Hai Phong ports is always an urgent problem that needs to be solved. At the present time, it is not easy to use dredged sediment for landfilling or other purposes. Moreover, it is also difficult to dispose of them on the land because of requiring the design and construction of dikes, requiring compaction and drainage of dumped materials. Therefore, disposing of materials at dumping sites in Hai Phong open waters is still an alternative for considering. However, the suspended sediment from the dumping sites can cause influences on the marine environment and ecosystems. Based on the characteristics of natural conditions, socio-economy and ecological environment in Hai Phong coastal areas as well as results of the modeling application (Delft3D model), this paper gives some proposals for appropriate solutions to reduce influences of sediment dumping activities in the Hai Phong open waters. They are: (1) Planning a land for reclamation of dumped materials, (2) Research on the strategies to use dredged sediments as a resource, (3) Finding a best method of dumping, (4) Considering tidal current for daily dumping, (5) Choosing disposal time during neap tide, (6) Restricting disposal in case winds come from SW and S, (7) Reducing time and the number of dumping, increasing amount of sediments in each dumping, (8) Applying technologies in disposal monitoring, (9) Regularly monitoring the environment at the dumping sites and adjacent areas.Downloads
Metrics
References
Vinh, V. D., Ouillon, S., Thanh, T. D., and Chu, L. V., 2014. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red river basin and delta. Hydrology and Earth System Sciences, 18(10), 3987–4005. doi:10.5194/hess-18-3987-2014.
Duy Vinh, V., Ouillon, S., and Van Uu, D., 2018. Estuarine Turbidity Maxima and variations of aggregate parameters in the Cam-Nam Trieu estuary, North Vietnam, in early wet season. Water, 10(1), 68.
Cục Hàng hải Việt Nam, 2013. Báo cáo đánh giá tác động môi trường dự án đầu tư xây dựng công trình cảng cửa ngõ quốc tế Hải Phòng - giai đoạn khởi động. Công ty TNHH cảng Công-ten-nơ quốc tế Hải Phòng.
Nguyễn Thị Minh Hải, 2016. Nghiên cứu cơ sở pháp lý và thực tiễn về quản lý hoạt động đổ thải chất nạo vét luồng cảng tại thành phố Hải Phòng. Luận văn thạc sỹ, trường đại học Khoa học Tự nhiên.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R., 2015. A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8), 331–345. doi:10.1002/2015EA000107.
Groenewoud, P., de Valk, C., and Williams, M., 2011. Overview of the Service and Validation of the Database. Reference: RP_A870.
Lefevre, F., Lyard, F. H., Le Provost, C., and Schrama, E. J., 2002. FES99: a global tide finite element solution assimilating tide gauge and altimetric information. Journal of Atmospheric and Oceanic Technology, 19(9), 1345–1356. doi:10.1175/1520-0426(2002)019<1345:F AGTFE>2.0.CO;2.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean dynamics, 56(5–6), 394–415. doi:10.1007/s10236-006-0086-x.
World Ocean Atlas 2013 Version 2 (WOA13 V2). Available online: https://www.nodc.noaa.gov/OC5/woa13/ (accessed on 20 April 2016).
Vũ Duy Vĩnh, Trần Đình Lân, 2018. Tác động của các điều kiện sóng đến đặc điểm vận chuyển bùn cát và biến động địa hình đáy vùng của sông ven biển Hải Phòng. Tạp chí Khoa học và Công nghệ biển, 18(1), 10–26.
Centre Saint-Laurent. Division des technologies de restauration, 1993. Guide pour l’évaluation et le choix des technologies de traitement des sédiments contaminés. Division des technologies de restauration, Centre Saint-Laurent, Environnement Canada.
Boutouil, M., 1998. Traitement des vases de dragage par stabilisation/solidification à base de ciment et additifs. Doctoral dissertation, Thèse de doctorat, Université du Havre, 245 p.
Agence de l’eau Artois-Picardie, 2001. Méthodes de gestion et de réutilisation des sédiments pollués: inventaire détaillé technique et financier des méthodes de curage, de traitement et des usages possibles: logiciel d'aide à la décision pour la gestion des sédiments.
Ulbricht, J. P., 2002. Contaminated sediments: raw materials for bricks. Symposium dragage. Dunkerque. France.
Colin, D., 2003. Valorisation de sédiments fins de dragage en technique routière. Doctoral dissertation, Caen.
Boutin, R., 1999. Amélioration des connaissances sur le comportement des rejets en mer de produits de dragage de type vase: phénomènes à court terme et dans le champ proche. Doctoral dissertation, Lyon, INSA.
Grégoire, P., 2004. Modèle conceptuel d’aide à la décision multicritère pour le choix négocié d'un scénario de dragage maritime. Doctoral dissertation, Artois.
Michel, F., 1997. Les granulates (aggregates). Union Nationale des producteurs de granulats, France, Pp. 40.
UNPG, 2005. Le marché des granulats en 2004 (the market of aggregates in 2004). Union Nationale des Producteurs de Granulats, France, Pp. 2.
Dubois, V., Abriak, N. E., Zentar, R., and Ballivy, G., 2009. The use of marine sediments as a pavement base material. Waste Management, 29(2), 774–782. doi:10.1016/j.wasman.2008.05.004.
PIANC, 2009. PIANC report no 104-2009 Dredged Material as a Resource: Options and Constraints. Available from http://www.pianc.org
Watabe, Y., Saegusa, H., Shinsha, H., and Tsuchida, T., 2011. Ten year follow-up study of airfoam-treated lightweight soil. Proceedings of the Institution of Civil Engineers-Ground Improvement, 164(3), 189–200.
Watabe, Y., Noguchi, T., and Mitarai, Y., 2012. Use of cement-treated lightweight soils made from dredged clay. Journal of ASTM International, 9(4), 1–10.
Watabe, Y., 2015. Advanced Prediction Methods of Consolidation Settlement in Land Reclamation. International Conference on Soft Ground Engineering. Singapore: Research Publishing.
(pp. 29–50).
Muttamara, S., and Baldisimo, J. M., 1988. Strategies for coastal water quality management: a case study of Laem Chabang (Thailand) deep-sea port development. Water science and technology, 20(6–7), 221–228.
Bokuniewicz, H. J., Gebert, J., Gordon, R. B., Higgins, J. L., and Kaminsky, P., 1978. Field Study of the Mechanics of the Placement of Dredged Material at Open-Water Disposal Sites. Volume II. Appendices JO. Yale Univ. New Haven Conn. Dept. of Geology and Geophysics.
Johnson, B. H. and Schroeder, P. R., 1993. Numerical Disposal Modeling. Dredging Research Program Technical Notes DRP-1-02. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. http://el.erdc.usace.ar-my.mil/elpubs/pdf/drp1-02.pdf
Moritz, H. R., Johnson, B. H., and Scheffner, N. W., 2000. Numerical Models for Predicting the Fate of Dredged Material Placed in Open Water. Chapter 16 in Handbook of Coastal Engineering, J.B. Herbich, ed., New York, McGraw-Hill.
Truitt, C. L., 1986. Fate of Dredged Material During Open Water Disposal. Environmental Effects of Dredging Technical Note EEDP-01-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. http://el.erdc.usace.ar-my.mil/dots/pdfs/eedp01-2.pdf
Land, J. M., and Bray, R. N., 2000. Acoustic measurement of suspended solids for monitoring of dredging and dredged material disposal. Journal of Dredging Engineering, 2(3), 1–17.
Barnard, W. D., 1978. Prediction and control of dredged material dispersion around dredging and open water pipeline disposal operations. Dredged Material Research Program Synthesis Report. TR DS-78-13, US Army Engineers Waterways Experiment Station. Vicksburg, Mississippi.
May, E. B., 1973. Environmental effects of hydraulic dredging in estuaries.
Scheffner, N. W., 1991. A systematic analysis of disposal site stability. In Coastal Sediments (pp. 2012–2026). ASCE.
Wolanski, E., Gibbs, R., Ridd, P., and Mehta, A., 1992. Settling of ocean-dumped dredged material, Townsville, Australia. Estuarine, Coastal and Shelf Science, 35(5), 473–489.
Healy, T., and Tian, F., 1999. Bypassing of Dredged Muddy Sediment and Thin-Layer Disposal, Hauraki Gulf, New Zealand. In Coastal Sediments (pp. 2457–2470). ASCE.
Spanhoff, R., Van Heuvel, T., and De Kok, J. M., 1991. Fate of dredged material dumped off the Dutch shore. In Coastal Engineering 1990 (pp. 2824–2837).
Li, C. W., and Ma, F. X., 2001. 3D numerical simulation of deposition patterns due to sand disposal in flowing water. Journal of hydraulic engineering, 127(3), 209–218.
Luger, S. A., Schoonees, J. S., Mocke, G. P., and Smit, F., 1999. Predicting and evaluating turbidity caused by dredging in the environmentally sensitive Saldanha Bay. In Coastal Engineering 1998
(pp. 3561–3574).
Moritz, H. P., Kraus, N. C., and Siipola, M. D., 1999. Simulating the Fate of Dredged Material: Columbia River, USA. In Coastal Sediments (pp. 2487–2503). ASCE.
Smith, G., Mocke, G., and Van Ballegooyen, R., 1999. Modelling turbidity associated with mining activity at Elizabeth Bay, Namibia. In Coastal Sediments (pp. 2504–2519). ASCE.
Mathis, D. B., and Payne, B. S. 1984. Guidance for Designation of Ocean Sites for Dredged Material Dumping. Environmental Effects of Dredging Information Exchange Bulletin, Vol D-84-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
United States Environmental Protection Agency (US EPA), 2005. Contaminated sediment remediation guidance for hazardous waste sites. EPA-540-R-05-012, OSWER 9355.0-85, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. http://www.epa.gov/ superfund/resources/sediment/guidance.html
EPA/USACE. 2007. Identifying, Planning, and Financing Beneficial Use Projects Using Dredged.