Propagation of Ultrashort Pulses in Nonlinear Media
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/26/4/9184Keywords:
ultrashort pulses, Kerr media, generalized nonlinear Schroedinger equation, solitonsAbstract
In this paper, a general propagation equation of ultrashort pulses in an arbitrary dispersive nonlinear medium derived in [9] has been used for the case of Kerr media. This equation which is called Generalized Nonlinear Schroedinger Equation usually has very complicated form and looking for its solutions is usually a very difficult task. Theoretical methods reviewed in this paper to solve this equation are effective only for some special cases. As an example we describe the method of developed elliptic Jacobi function expansion and its expended form: F-expansion Method. Several numerical methods of finding approximate solutions are briefly discussed. We concentrate mainly on the methods: Split-Step, Runge-Kutta and Imaginary-time algorithms. Some numerical experiments are implemented for soliton propagation and interacting high order solitons. We consider also an interesting phenomenon, namely the collapse of solitons, where the variational formalism has been used.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 10-03-2017