Ripplon Modes of Two Segregated Bose-Einstein Condensates in Confined Geometry
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/26/1/7790Keywords:
Bose-Einstein condensates, hydrodynamic approach, ripplon modes, Kelvin-Helmholtz instability, Bernoulli equationAbstract
The ripplon modes of two segregated Bose-Einstein condensates (BECs) confined by one and two hard walls are respectively studied by means of the hydrodynamic approach within the Gross-Pitaevskii (GP) theory. For the system at rest we find that due to the spatial restriction the dispersion relations are of the form \(\omega \sim {k^2}\) in low momentum limit for both cases, while for the system in motion parallel to the interface the dispersion relations for both cases are \(\omega \sim k\) at low momentum limit and, furthermore, the system becomes unstable.Downloads
Metrics
References
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 78, 586 (1997). DOI: https://doi.org/10.1103/PhysRevLett.78.586
D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E.A.Cornell, Phys. Rev. Lett. 81 , 1539 (1998). DOI: https://doi.org/10.1103/PhysRevLett.81.1539
D. M. Stamper-Kurn, H. J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger and W. Ketterle, Phys. Rev. Lett. 83,
(1999).
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Phys. Rev. Lett. 83,
(1999).
H. J. Miesner , D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur and W. Ketterle, Phys. Rev. Lett. 82,
(1999).
D. J. McCarron, H.W. Cho, D. L. Jenkin, M. P. Koppinger and S. L. Cornish, Phys. Rev. A 84, 011603(R) (2011).
S. B. Papp, J. M. Pino and C. E. Wieman, Phys. Rev. Lett. 101, 040402 (2008). DOI: https://doi.org/10.1103/PhysRevLett.101.040402
D. S. Hall, in Emergent Nonlinear Phenomena in Bose-Einstein condensates, edited by P.G.Kevrekidis , D. J.
Frantzeskakis and R. Carretero-Gonzales ( Springer-Verlag, Berlin, (2008 ), Chap.16 , p.307.
E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998). DOI: https://doi.org/10.1103/PhysRevLett.81.5718
P.Ao and S.T.Chui, Phys. Rev. A 58, 4836, (1998). DOI: https://doi.org/10.1103/PhysRevA.58.4836
A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, and M.Marklund, Phys. Rev. A 82, 043623 (2010). DOI: https://doi.org/10.1103/PhysRevA.82.043608
D. Kobyakov, V. Bychkov , E. Lundh, A. Bezett, V. Akkerman and M. Marklund, Phys. Rev. A 83, 043623
(2011).
J. O. Indekeu and B. Van Schaeybroeck, Phys. Rev. Lett . 93, 210402 (2004). DOI: https://doi.org/10.1103/PhysRevLett.93.210402
B. Van Schaeybroeck, Phys. Rev. A 78 023624 (2008); 80, 06560(addendum ) (2009); 93, 210402 (2004).
B. Van Schaeybroeck and J. O. Indekeu, Phys. Rev. A 91, 013626 (2015). DOI: https://doi.org/10.1103/PhysRevA.91.013626
J. O. Indekeu, Chang-You Lin, N. V. Thu, B. Van Schaeybroeck and T. H. Phat, Phys. Rev. A 91, 033615 (2015). DOI: https://doi.org/10.1103/PhysRevA.91.033615
K. Sasaki, N. Suzuki and H. Saito, Phys. Rev. A 83, 033602 (2011); 83, 053606 (2011). DOI: https://doi.org/10.1103/PhysRevA.83.053606
C. Ticknor , Phys. Rev. A 89, 053601 (2014). DOI: https://doi.org/10.1103/PhysRevA.89.053601
D. A. Takahashi , M. Kobayashi and M. Nitta, Phys. Rev. B 91, 184501 (2015). DOI: https://doi.org/10.1103/PhysRevB.91.184501
T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto and H. Saito, Phys. Rev. A 85, 013602 (2012). DOI: https://doi.org/10.1103/PhysRevA.85.013602
F. V. Pepe, P. Facchi, G. Florio and S. Pascazio, Phys. Rev. A 86, 023629 (2012). DOI: https://doi.org/10.1103/PhysRevA.86.023629
T. H. Phat, L. V. Hoa, N. T. Anh and N. V. Long, Ann. Phys.(NY). 324, 2074 (2009) . DOI: https://doi.org/10.1016/j.aop.2009.07.003
B. Van Schaeybroeck, Phys. Rev. A 392, 3806 (2013). DOI: https://doi.org/10.1016/j.physa.2013.04.026
A. Roy, S. Gautam and D. Angom, Phys. Rev. A 89, 013617 (2014). DOI: https://doi.org/10.1103/PhysRevA.89.013617
G. Ceccarelli, J. Nespolo, A. Pelissetto and E. Vicari, Phys. Rev. A 92, 043613 (2015). DOI: https://doi.org/10.1103/PhysRevA.92.043613
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 4th ed. (Academic Press, NY, 2008).
I. K. Kundu, I. M. Cohen and D. R. Dowling, Fluid Mechanics, 5th edition, Elsevier 2012, Amsterdam, Netherlands.
This approximation corresponds to the Boussinesq approximation in classic hydrodynamics, see [27], p.135 for
detail .
A. N. Malmi - Kakkada, O. T. Valls and C. Dasgupta, J. Phys. B 47, 055301 (2014). DOI: https://doi.org/10.1088/0953-4075/47/5/055301
D. A. Takahashi and M. Nitta, Ann. Phys.(NY). 354, 101 (2015). DOI: https://doi.org/10.1016/j.aop.2014.12.009
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 12-04-2016