Spacetimes with Pseudosymmetric Energy-momentum Tensor
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/26/2/7446Keywords:
Perfect fluid, Einstein's field equation, pseudosymmetric energy-momentum tensor.Abstract
The object of the present paper is to introduce spacetimes with pseudosymmetricenergy-momentum tensor. In this paper at first we consider the relation \(R(X,Y)\cdot T=fQ(g,T)\), that is, the energy-momentumtensor \(T\) of type (0,2) is pseudosymmetric. It is shown that in a general relativistic spacetimeif the energy-momentum tensor is pseudosymmetric, then the spacetime is also Ricci pseudosymmetricand the converse is also true. Next we characterize the perfect fluid spacetimewith pseudosymmetric energy-momentum tensor. Finally, we consider conformally flat spacetime withpseudosymmetric energy-momentum tensor.Downloads
Metrics
References
L. Amendola and S. Tsujikawa, Dark Energy: Theory and observations, Cambridge Univ. Press, Cambridge, 2010. DOI: https://doi.org/10.1017/CBO9780511750823
K. Arslan et al., On generalized Robertson-Walker spacetimes satisfying some curvature condition, Turk. J. Math., 38(2014), 353-373. DOI: https://doi.org/10.3906/mat-1304-3
J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
O. Bertolami, Latest supernova data in the framework of generalized Chaplygin Gas Model, Mon. Not. R. Astron. Soc., 353(2004), p. 329. DOI: https://doi.org/10.1111/j.1365-2966.2004.08079.x
E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian manifolds of conullity two, Singapore World Sci. Publishing, 1996. DOI: https://doi.org/10.1142/3198
M. C. Chaki and S. Roy, Spacetimes with covariant-constant energy-momentum tensor, Int. J. Theor. Phys., 35(1996), 1027-1032. DOI: https://doi.org/10.1007/BF02302387
S. Chakraborty, N. Mazumder and R. Biswas, Cosmological Evolution Across Phantom Crossing and the Nature of the Horizon, Astrophys. Space Sci., 334(2011), 183-186. DOI: https://doi.org/10.1007/s10509-011-0704-z
B. Y. Chen and K. Yano, Hypersurfaces of a conformally
at spaces, Tensor(N.S.), 26(1972), 318-322.
C. J. S. Clarke, Singularities: Global and local aspects in Topological Properties and Global structure of spacetime, Edited by P. G. Bergmann and V. de Sabbata, Plenum Press, New York.
U. C. De and L. Velimirovic, Spacetimes with Semisymmetric energy momentum tensor, Int. J. Theor. Phys., 54(2015), 1779-1783. DOI: https://doi.org/10.1007/s10773-014-2381-5
B. P. Geroch, Spacetime structure from a global view point, Academic Press, New York, 1971.
S. Guler and S. A. Demirbag, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., DOI-10.1007/s10773-015-2692 1.
S. W. Hawking and G. F. R. Ellis, The large-scale structure of spacetime, Cambridge Univ. Press, 1973. DOI: https://doi.org/10.1017/CBO9780511524646
P. S. Joshi, Global aspects in gravitation and cosmology, Oxford Science Publications, 1993.
O. Kowalski, An explicit classication of 3-dimensional Riemannian spaces satisfying R(X; Y ) R = 0; Czechoslovak Math. J., 46(121)(1996), 427-474 DOI: https://doi.org/10.21136/CMJ.1996.127308
V. A. Mirzoyan, Ricci semisymmetric submanifolds(Russian), Itogi Nauki i Tekhniki. Ser.
Probl. Geom., 23, VINITI, Moscow, 1991, 29-66. DOI: https://doi.org/10.1177/004005999102300417
B. O'Neill, Semi-Riemannian Geometry, Academic Press, Inc. NY 1983.
H. Stephani, General Relativity-An Introduction to the Theory of Gravitational Field, Cambridge Univ. Press, Cambridge , 1982.
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein's Field equations, Second Edition, Cambridge Monographs on Mathematical
Physics, Cambridge Univ. Press, Cambridge, 2003.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) R = 0: I. The local version, J. Di. Geom. 17(1982), 531-582. DOI: https://doi.org/10.4310/jdg/1214437486
Z. I. Szabo, Classication and construction of complete hypersurfaces satisfying R(X; Y ) R = 0; Acta Sci. Math. (Szeged), 47(1981), 321-348.
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X; Y ) R = 0: II. Global version, Geom. Dedicate, 19(1985), 65-108. DOI: https://doi.org/10.1007/BF00233102
L. Verstraelen, Comments on pseudo-symmetry in the sense of Deszcz, Geometry and Topology of Submanifolds, 6(1994), 199-209, World Sci., Singapore.
A. Yildiz, U. C. De and A. Cetinkaya, On some classes of N(k)-quasi-Einstein manifolds, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 83(2013), 239-245. DOI: https://doi.org/10.1007/s40010-013-0071-y
F. O. Zengin, m-Projectively flat spacetimes, Math. Reports, 14(64)/4(2012), 363-370.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 01-09-2016
Published 15-09-2016