Development of a fluorescence correlation spectroscopy instrument and its application in sizing quantum dot nanoparticles
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/25/1/5670Keywords:
fluorescence correlation spectroscopy, single molecule detection, quantum dots, photon countingAbstract
Fluorescence correlation spectroscopy is a relatively new technique to measure and quantify the statistical fluctuations of the fluorescence signal from the measurement volume. Combining with sensitive detection method and confocal microscopy, the FCS technique has become a powerful tool in studying the dynamic properties of nanoparticles at single particle level. In this paper we present the construction of a highly sensitive FCS instrument and the measurement results from a sample of semiconductor quantum dots. We provide the analysis procedure for determining the hydrodynamic radius of the quantum dots and compare the results with that obtained directly from electron microscope imaging. The good agreement indicates the reliability of the FCS technique and open the way for further applications of this technique in studying nanoparticles.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 17-03-2015
Published 21-04-2015