Mott Transition of the Half-filled Hubbard Model in a Two-dimensional Frustrated Lattice

Hoang Anh Tuan, Le Duc Anh
Author affiliations

Authors

  • Hoang Anh Tuan Institute of Physics, VAST
  • Le Duc Anh Department of Physics, Hanoi National University of Education

DOI:

https://doi.org/10.15625/0868-3166/23/1/538

Keywords:

Mott-insulator, Hubbard model, geometrical frustration, coherent potential approximation

Abstract

Using coherent potential approximation we study zero-temperature Mott transition of the half-filled Hubbard model

in a two-dimensional square lattice with geometrical frustration. It turns out that the geometrical frustration reduces the gap between the Hubbard bands. As a result the metallic phase is stabilized up to a fairly large value of the on-site Coulomb interaction. We found that the critical value $U_C$ for the Mott transition is enhanced by the geometrical frustration. Our results are in good agreement with the ones obtained by the single-site dynamical mean-field theory.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. Fulde, J. Phys.: Condens. Matter 16 (2004) S591. DOI: https://doi.org/10.1088/0953-8984/16/11/004

J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82

(2010) 53.

S. Kondo et al., Phys. Rev. Lett. 78 (1997) 3729. DOI: https://doi.org/10.1103/PhysRevLett.78.3729

D. C. Johnston, J. Low. Temp. Phys. 25 (1976) 145. DOI: https://doi.org/10.1007/BF00654827

T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys. Rev. Lett.

(2008) 076402.

N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. B68 (2003) 195103. DOI: https://doi.org/10.1103/PhysRevB.68.235103

N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. Lett. 95 (2005) DOI: https://doi.org/10.1103/PhysRevLett.95.037001

B. H. Bernhard, B. Canals, and C Lacroix, J. Phys.: Condens. Matter 19

(2007) 145258.

T. Ohashi, T. Momoi, H. Tsunetsugu, N. Kawakami, Prog. Ther. Phys.

Suppl. bf 176 (2008) 97. DOI: https://doi.org/10.1143/PTPS.176.97

S. Fujimoto, Phys. Rev. B64 (2001) 085102. DOI: https://doi.org/10.1103/PhysRevB.64.085102

T. Yoshioka, A. Koga, and N. Kawakami, J. Phys. Soc. Jpn. 77 (2008) DOI: https://doi.org/10.1143/JPSJ.77.104702

A. Kogaa, T. Yoshiokaa, N. Kawakamia, H. Yokoyamab, Physica C 460

(2007) 1070.

O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92 (2004) 226402. DOI: https://doi.org/10.1103/PhysRevLett.92.226402

B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175 (1968) 745. DOI: https://doi.org/10.1103/PhysRev.175.747

F. Brouers, M. Cyrot, and F. Cyrot-Lackmann, Phys. Rev. B7 (1973) DOI: https://doi.org/10.1103/PhysRevB.7.4370

F. Ducastelle, J. Phys. C: Solid State Phys. 7 (1974) 1795. DOI: https://doi.org/10.1088/0022-3719/7/10/007

A. Georges, G. Kotliar,W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys.

(1996) 13.

M. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett 83 (1999) 3498. DOI: https://doi.org/10.1103/PhysRevLett.83.3498

T. Ohashi, N. Kawakami, and H. Tsunetsugu, Phys. Rev. Lett 97 (2006) 066401. DOI: https://doi.org/10.1103/PhysRevLett.97.066401

Downloads

Published

10-04-2013

How to Cite

[1]
H. A. Tuan and L. D. Anh, “Mott Transition of the Half-filled Hubbard Model in a Two-dimensional Frustrated Lattice”, Comm. Phys., vol. 23, no. 1, p. 49, Apr. 2013.

Issue

Section

Papers
Received 27-04-2012
Published 10-04-2013

Most read articles by the same author(s)

<< < 1 2