Mott Transition of the Half-filled Hubbard Model in a Two-dimensional Frustrated Lattice
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23/1/538Keywords:
Mott-insulator, Hubbard model, geometrical frustration, coherent potential approximationAbstract
Using coherent potential approximation we study zero-temperature Mott transition of the half-filled Hubbard modelin a two-dimensional square lattice with geometrical frustration. It turns out that the geometrical frustration reduces the gap between the Hubbard bands. As a result the metallic phase is stabilized up to a fairly large value of the on-site Coulomb interaction. We found that the critical value $U_C$ for the Mott transition is enhanced by the geometrical frustration. Our results are in good agreement with the ones obtained by the single-site dynamical mean-field theory.
Downloads
Metrics
References
P. Fulde, J. Phys.: Condens. Matter 16 (2004) S591. DOI: https://doi.org/10.1088/0953-8984/16/11/004
J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82
(2010) 53.
S. Kondo et al., Phys. Rev. Lett. 78 (1997) 3729. DOI: https://doi.org/10.1103/PhysRevLett.78.3729
D. C. Johnston, J. Low. Temp. Phys. 25 (1976) 145. DOI: https://doi.org/10.1007/BF00654827
T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys. Rev. Lett.
(2008) 076402.
N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. B68 (2003) 195103. DOI: https://doi.org/10.1103/PhysRevB.68.235103
N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. Lett. 95 (2005) DOI: https://doi.org/10.1103/PhysRevLett.95.037001
B. H. Bernhard, B. Canals, and C Lacroix, J. Phys.: Condens. Matter 19
(2007) 145258.
T. Ohashi, T. Momoi, H. Tsunetsugu, N. Kawakami, Prog. Ther. Phys.
Suppl. bf 176 (2008) 97. DOI: https://doi.org/10.1143/PTPS.176.97
S. Fujimoto, Phys. Rev. B64 (2001) 085102. DOI: https://doi.org/10.1103/PhysRevB.64.085102
T. Yoshioka, A. Koga, and N. Kawakami, J. Phys. Soc. Jpn. 77 (2008) DOI: https://doi.org/10.1143/JPSJ.77.104702
A. Kogaa, T. Yoshiokaa, N. Kawakamia, H. Yokoyamab, Physica C 460
(2007) 1070.
O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92 (2004) 226402. DOI: https://doi.org/10.1103/PhysRevLett.92.226402
B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175 (1968) 745. DOI: https://doi.org/10.1103/PhysRev.175.747
F. Brouers, M. Cyrot, and F. Cyrot-Lackmann, Phys. Rev. B7 (1973) DOI: https://doi.org/10.1103/PhysRevB.7.4370
F. Ducastelle, J. Phys. C: Solid State Phys. 7 (1974) 1795. DOI: https://doi.org/10.1088/0022-3719/7/10/007
A. Georges, G. Kotliar,W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys.
(1996) 13.
M. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett 83 (1999) 3498. DOI: https://doi.org/10.1103/PhysRevLett.83.3498
T. Ohashi, N. Kawakami, and H. Tsunetsugu, Phys. Rev. Lett 97 (2006) 066401. DOI: https://doi.org/10.1103/PhysRevLett.97.066401
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 10-04-2013