Vol. 22 No. 4 (2012)
Papers

Effects of Thermodynamic Pairing on Nuclear Level Density

Nguyen Quang Hung
Tan Tao University, Long An, Vietnam
Dang Thi Dung
Institute of Physics, VAST
Tran Dinh Trong
Institute of Physics, VAST

Published 10-01-2013

Keywords

  • Nuclear structure,
  • pairing,
  • BCS theory,
  • finite temperature,
  • level density

How to Cite

Hung, N. Q., Dung, D. T., & Trong, T. D. (2013). Effects of Thermodynamic Pairing on Nuclear Level Density. Communications in Physics, 22(4), 297. https://doi.org/10.15625/0868-3166/22/4/408

Abstract

Thermodynamic properties of some selected even-even nuclei such as $^{56}$Fe, $^{60}$Ni, $^{98}$Mo, and $^{116}$Sn are studied within the Bardeen-Cooper-Schrieffer theory at finite temperature (FTBCS) taking into account pairing correlations. The theory also incorporates the particle-number projection within the Lipkin-Nogami method (FTLN). The level densities are derived based on the statistical theory of the grand-canonical ensemble (GCE). The results obtained are compared with the recent experimental data by Oslo (Norway) group. It is found that pairing correlations have significant effects on nuclear level density, especially at low and intermediate excitation energies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. bibitem{Dean} D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. {bf 75} (2003) 607.
  2. bibitem{BCS} J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. {bf 108} (1957) 1175.
  3. bibitem{Moretto} L. G. Moretto, Phys. Lett. {bf B 40} (1972) 1.
  4. bibitem{Goodman} A. L. Goodman, Nucl. Phys. {bf A 352} (1981) 30; Phys. Rev. {bf C 29} (1984) 1887.
  5. bibitem{Lipkin} H. J. Lipkin, Ann. Phys. (NY) {bf 9} (1960) 272; Y. Nogami and I. J. Zucker, Nucl. Phys. {bf 60} (1964) 203; Y. Nogami, Phys. Lett. {bf 15} (1965) 4.
  6. bibitem{Oslo1} E. Melby et al., Phys. Rev. Lett. {bf 83} (1999) 3150; A. Schiller et al., Phys. Rev. {bf C 63} (2001) 021306(R); E. Algin et al., Phys. Rev. {bf C 78} (2008) 054321.
  7. bibitem{Oslo2} M. Guttormsen et al., Phys. Rev. {bf C 62} (2000) 024306; R. Chankova et al., Phys. Rev. {bf C 73} (2006) 034311.
  8. bibitem{HungPRC78} N. Quang Hung and N. Dinh Dang, Phys. Rev. {bf C 78} (2008) 064315.
  9. bibitem{DangNPA784} N. Dinh Dang, Nucl. Phys. {bf A 784} (2007) 147.
  10. bibitem{DangPRC77} N. Dinh Dang and N. Quang Hung, Phys. Rev. {bf C 77} (2008) 064315
  11. bibitem{DOS} L. G. Moretto, Nucl. Phys. {bf A 185} (1972) 145; A. N. Behkami and J. R. Huizenga, Nucl. Phys. {bf A 217} (1973) 78.
  12. bibitem{BSk14} S. Hilaire and S. Goriely, Nucl. Phys. {bf A 779} (2006) 63; S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. {bf C 78} (2008) 064307.
  13. bibitem{WS} S. Cwiok et al., Comput. Phys. Commun. {bf 46} (1987) 379.
  14. bibitem{Beta2} S. Liu and Y. Alhassid, Phys. Rev. Lett. {bf 87} (2001) 022501; K. Kaneko et al., Phys. Rev. {bf C 74} (2006) 024325.
  15. bibitem{Ring} P. Ring and P. Schuck, {it The Nuclear Many-Body Problem} (Springer-Verlag, New York, 1980).
  16. bibitem{TF} V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys. Rep. {bf 276} (1996) 85; N. Dinh Dang and V. Zelevinsky, Phys. Rev. {bf C 64} (2001) 064319; N. Dinh Dang and A. Arima, Phys. Rev. {bf C 67} (2003) 014304.