A Low Cost Microwave Synthesis Method for Preparation of Gold Nanoparticles
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/2/3809Keywords:
gold nanoparticles, particles size and distribution, microwave synthesis, nanostructuresAbstract
Gold nanoparticles are being used in various biomedical applications due to their small size to volume ratio, extensive thermal stability, less toxic… Many different techniques e.g. chemical, photochemical reduction and electrochemical, gamma have been applied to preparing this nanoparticle. In this paper, we are developing a low-cost technique by using a common microwave system with medium power for synthesizing gold nanoparticles with using sodium citrate (Na3Ct) reduction in chloroauric acid (HAuCl4.3H2O). It was found that the comparing with normal thermal method, the reaction by the microwave irradiation was much faster. Besides, the effects the sodium citrate concentration and optical properties of gold nanoparticles were studied. The optical properties of gold nanoparticles suspension were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-VIS absorption spectroscopy (UV-Vis). Maximum absorbance wavelengths ( λmax ) for gold nanoparticles are ~ 518-524 nm with the size of 12-25 nm. The size of gold nanoparticles decreases with increasing concentration of sodium citrate. Besides, the morphology of gold nanoparticles have a spherical shape with face-centered-cubic (fcc) crystalline structure.
Downloads
Metrics
References
P. Raveendran, J. Fu, and S. L. Wallen, A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles, Green Chemistry, vol. 8, no. 1, pp. 34–38, 2006. DOI: https://doi.org/10.1039/B512540E
R Sardar; AM Funston; P Mulvaney; RW Murray, Gold Nanoparticles: Past,Present, and Future, Langmuir, vol. 25, p. 13840, 2009. DOI: https://doi.org/10.1021/la9019475
Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ, Biological applications of gold nanoparticles., Chem Soc Rev, vol. 37, p. 1896, 2008. DOI: https://doi.org/10.1039/b712170a
Boisselier E, Astruc D, Gold nanoparticles in nanomedicine: preparations,imaging, diagnostics, therapies and toxicity., Chem Soc Rev, vol. 38, p. 1759, 2009. DOI: https://doi.org/10.1039/b806051g
G. C. Schatz, A. A. Lazarides, K. L. Kelly, and T. R. Jensen, Optical Properties of Metal Nanoparticles Aggregates Important in Biosensors, J. Mol. Struc. (Theochem), vol. 59, p. 529, 2000. DOI: https://doi.org/10.1016/S0166-1280(00)00532-7
Jang-Sik Lee, Recent progress in gold nanoparticle-based non-volatile memory devices, Gold Bull, vol. 43, issuse 3, p. 189-199, 2010. DOI: https://doi.org/10.1007/BF03214986
J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold", Discuss. Faraday. Soc., Vol 11, p55–75, 1951. DOI: https://doi.org/10.1039/df9511100055
M.C. Daniel, D. Astuc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. vol 104, p.D293–D346, 2004. DOI: https://doi.org/10.1021/cr030698+
Chien-Jung Huang, Pin-Hsiang Chiu, Yeong-Her Wang, Wen-Ray Chen, and Teen-Hang Meen, Electrochemically Controlling the Size of Gold Nanoparticles, Journal of The Electrochemical Society, vol 153 , no 12,p D193–D198, 2006. DOI: https://doi.org/10.1149/1.2358103
S. Kundu, S. Panigrahi, S. Praharaj, S. Basu, S.K. Ghosh, A. Pal, T. Pal, Anisotropic growth of gold clusters to gold nanocubes under UV irradiation, Nanotechnology, vol 18, no 7, p 075712–075719, 2007. DOI: https://doi.org/10.1088/0957-4484/18/7/075712
V.G. Pol, A. Gedanken, J. Calderro-Moreno, Deposition of GoldNanoparticles on Silica Spheres:A Sonochemical Approach, Chem.Material, vol 15, p 1111–1118, 2003. DOI: https://doi.org/10.1021/cm021013+
C.C. Kim, C.H. Wang, Y.C. Yang, Y. Hwu, S.K. Seol, Y.B. Kwon, C.H. Chen, H.W. Liou, H.M. Lin, G. Margaritondo, J.H. Je, X-ray Synthesis of Nickel-gold Composite Nanoparticles, Materials Chemistry and Physics, vol 100, p292–295, 2006. DOI: https://doi.org/10.1016/j.matchemphys.2006.01.001
C.H. Wang, C.J. Liu, C.L. Wang, T.E. Hua, J.M. Obliosca, K.H. Lee, Y. Hwu, C.S.Yang, R.S. Liu, H.M. Lin, J.H. Je, G.Margaritondo, Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense x-ray irradiation, J. Phys. D: Appl. Phys, vol 41, p195301, 2008. DOI: https://doi.org/10.1088/0022-3727/41/19/195301
R. Sreeja, P.M. Aneesh, A. Aravind, R. Reshmi, R. Philip, M.K. Jayaraj, Size-Dependent Optical Nonlinearity of Au Nanocrystals, J. Electrochem. Soc, vol 156, no 10, p. K167–K172, 2009. DOI: https://doi.org/10.1149/1.3184188
H.M. Kingston, S.J. Haswell, Microwave-Enhanced Chemistry, American Chemical Society,Washington, DC, 2005
S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, Microwave−Polyol Process for Pt and Ag Nanoparticles, Langmuir, vol 18, p5959-5962, 2002. DOI: https://doi.org/10.1021/la025741n
Fuelong D.N., A. Launikonis & W.H.F. Sasse, Colloidal platinum sols. preparation, characterization and stability towards salt. J. Chem. Soc., Faraday Trans. 1 vol 80, no 3, p 571–588, 1984. DOI: https://doi.org/10.1039/f19848000571
S. K. Seola, D. Kima, S. Junga, Y. Hwu, Microwave synthesis of gold nanoparticles: Effect of applied microwave power and solution pH, Materials Chemistry and Physics vol 131, p331–335, 2011. DOI: https://doi.org/10.1016/j.matchemphys.2011.09.050
N.N Long, L.V. Vu, C. D. Kiem, S. C. Danh, C. T . Nguyet, P. T. Hang, N. D. Thien, L. M Quynh, Synthesis and optical properties of colloidal gold nanoparticles, Journal of Physics: Conference Series, vol187, p 012026, 2009. DOI: https://doi.org/10.1088/1742-6596/187/1/012026
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 05-07-2014
Published 23-07-2014