New Aspects on Stability Analysis of a Planar Charge-varying Collisional Dust Molecular Cloud with Finite Thermal Inertia

P. K. Karmakar, B. Borah
Author affiliations

Authors

  • P. K. Karmakar Department of Physics, Tezpur University, Napaam, Tezpur-784028, Assam, India
  • B. Borah Department of Physics, Tezpur University, Napaam, Tezpur-784028, Assam, India

DOI:

https://doi.org/10.15625/0868-3166/24/1/3599

Keywords:

Nonlinear modes, KdV system, Oscillatory shocks, Soliton patterns

Abstract

A theoretical evolutionary model for the nonlinear stability analysis of a planar dust molecular cloud (DMC) in quasi-neutral hydrodynamic equilibrium on the Jeans scales of space and time is developed. It is based on a self-gravitating multi-fluid model consisting of the warm electrons and ions, and the inertial cold dust grains with partial ionization. The Jeans assumption of self-gravitating uniform medium is adopted for fiducially analytical simplification by neglecting the zero-order field. So, the equilibrium is justifiably treated initially as “homogeneous”, thereby validating nonlinear local analysis. The lowest-order finite inertial correction of the thermal species (thermal inertia, which is conventionally neglected), heavier grain-charge fluctuation and all the possible collisional dynamics are included simultaneously amid non-equilibrium plasma inhomogeneities. We apply a standard multiple scaling technique methodologically to show that the eigenmodes are collectively governed by a new electrostatic driven Korteweg-de Vries (d-KdV) equation having a self-consistent nonlinear driving source, and self-gravitational Korteweg-de Vries (KdV) equation with neither a source, nor a sink. A detailed numerical shape-analysis with judicious multi-parameter variation parametrically portrays the excitation of electrostatic eigenmodes evolving as damped oscillatory shocks (nonconservative) with the increasing global amplitude due to the source, and extended two-tail compressive solitons (conservative), when the source-strength becomes very weak. In contrast, the self-gravitational counterparts grow as bell-shaped rarefactive soliton-like structures (conservative). The correlative effect of diverse plasma parameters on the amplitudes and patterns is explicitly investigated. Interestingly, this is conjectured that the grain-mass plays a key role in the eigenmode shaping (growth and decay) through the interplaying processes of pulsating gravito-electrostatic coupling. As the grain-mass increases, a new type of shock-to-soliton transition results, and so forth. The significance of the study in space, laboratory and astrophysical environments is stressed. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

References

Khan M, Ghosh S, Sarkar S, Gupta MR. Ion acoustic shock waves in a dusty plasma. Physica Scripta 2005;T116:53. DOI: https://doi.org/10.1238/Physica.Topical.116a00053

Mamun AA, Shukla PK. The role of dust charge fluctuations on nonlinear dust ion- acoustic waves. IEEE Trans Plasma Sci 2002;30:720. DOI: https://doi.org/10.1109/TPS.2002.1024274

Shukla PK, Silin VP. Dust ion–acoustic wave. Physica Scripta 1992;45:508. DOI: https://doi.org/10.1088/0031-8949/45/5/015

Vranjes J, Pandey BP, Poedts S. Effect of dust charge fluctuations on current-driven dust-ion-acoustic waves. Phys Rev E 2001;64:066404. DOI: https://doi.org/10.1103/PhysRevE.64.066404

Burman S, Chowdhury AR. Solitary waves in self-gravitating dusty plasma. Chaos, Solitons and Fractals 2002;13:973. DOI: https://doi.org/10.1016/S0960-0779(01)00044-3

Gupta MR, Sarkar S, Ghosh S, Debnath M, Khan M. Effect of nonadiabaticity of dust charge variation on dust acoustic waves: Generation of dust acoustic shock waves. Phys Rev E 2001;63:046406. DOI: https://doi.org/10.1103/PhysRevE.63.046406

Zhi-Rong G, Zeng-Quiang Y, Bao-Xiang Y, Mao-Zhu S. Nonlinear acoustic waves in collisional self-gravitating dusty plasma. Chin Phys B 2010;19:115203. DOI: https://doi.org/10.1088/1674-1056/19/11/115203

Rao NN, Shukla PK. Nonlinear dust acoustic waves with dust charge fluctuations. Planet Space Sci 1994;42:221. DOI: https://doi.org/10.1016/0032-0633(94)90084-1

Barkan A, Marlino RL, Angelo ND. Laboratory observation of the dust-acoustic wave. Phys Plasmas 1995;2:3563. DOI: https://doi.org/10.1063/1.871121

Marlino RL, Heinrich JR, Hyun S-H, Meyer JK. Nonlinear dust acoustic waves and shocks. Phys Plasmas 2012;19:057301. DOI: https://doi.org/10.1063/1.3693972

Nakamura Y, Bailung H, Shukla PK. Observation of ion-acoustic shocks in a dusty plasma. Phys Rev Lett 1999;83:1602. DOI: https://doi.org/10.1103/PhysRevLett.83.1602

Pandey BP, Vranjes J, Poedts S, Shukla P K. The pulsational mode in the presence of dust charge fluctuations. Physica Scripta 2002;65:513. DOI: https://doi.org/10.1238/Physica.Regular.065a00513

Verheest F. Waves and instabilities in dusty space plasma. Space Sci Rev 1996;77:267. DOI: https://doi.org/10.1007/BF00226225

Verheest F, Cadez VM. Static configurations of gravitating dusty plasmas. Phys Rev E 2002;66:056404. DOI: https://doi.org/10.1103/PhysRevE.66.056404

Dwivedi CB, Sen AK, Bujarbarua S. Pulsational mode of gravitational collapse and its impact on the star formation. Astron Astrophys 1999;345:1049.

Karmakar PK. Nonlinear stability of pulsational mode of gravitational collapse in a self-gravitating hydrostatically bounded dust molecular cloud. Pramana- J Phys 2011;76:945. DOI: https://doi.org/10.1007/s12043-011-0073-8

Karmakar PK, Borah B. New nonlinear eigenmodes of a self-gravitating spherical charged dust molecular cloud. Physica Scripta 2012;86:025503. DOI: https://doi.org/10.1088/0031-8949/86/02/025503

Cattaert T, Verheest F. Solitary waves in self-gravitating molecular clouds. Astron Astrophys 2005;438:23. DOI: https://doi.org/10.1051/0004-6361:20052972

Klessen RS, Krumholz MR, Heitsch F. Numerical star-formation studies-A status report. Adv Sci Lett 2011;4:258. DOI: https://doi.org/10.1166/asl.2011.1207

Avinash K, Shukla PK. A purely growing instability in a gravitating dusty plasma. Phys Lett A 1994;189:470. DOI: https://doi.org/10.1016/0375-9601(94)91211-4

Karmakar PK, Bora B. Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation. Eur Phys J D 2013;67:187. DOI: https://doi.org/10.1140/epjd/e2013-40165-7

Karmakar PK, Bora B. Inertia-centric stability analysis of a planar uniform dust molecular cloud with weak neutral-charged dust frictional coupling. Plasma Sci Tech 2013 (accepted). DOI: https://doi.org/10.1088/1009-0630/16/5/01

Dwivedi CB, Prakash R. Relaxation effect of electron inertial delay in an ion-beam plasma system. J Appl Phys 2001;90:3200. DOI: https://doi.org/10.1063/1.1397284

Karmakar PK, Deka U, Dwivedi CB. Graphical analysis of electron inertia induced acoustic instability. Phys Plasmas 2005;12:032105. DOI: https://doi.org/10.1063/1.1851992

Karmakar PK, Deka U, Dwivedi CB. Response to comments on “Graphical analysis of electron inertia-induced acoustic instability”. Phys Plasmas 2006;13:104702. DOI: https://doi.org/10.1063/1.2357115

Deka U, Dwivedi CB. Effect of electron inertial delay on Debye sheath formation. Braz J Phys 2010;40:333. DOI: https://doi.org/10.1590/S0103-97332010000300014

Deka U, Sarma A, Prakash R, Karmakar PK, Dwivedi CB. Electron inertial delay effect on acoustic soliton behavior transonic region. Physica Scripta 2004;69:303. DOI: https://doi.org/10.1238/Physica.Regular.069a00303

Mahmood S, Ur-Rehman H. Formation of electrostatic solitons, monotonic, and oscillatory shocks in pair-ion plasmas. Phys Plasmas 2010;17:072305. DOI: https://doi.org/10.1063/1.3458903

Volosevich AV, Meister C-V. Nonlinear electrostatic structures in collisional dusty plasmas. Contrib Plasma Phys 2012;42:61. DOI: https://doi.org/10.1002/1521-3986(200201)42:1<61::AID-CTPP61>3.0.CO;2-B

Popel SI, Losseva TV, Golub AP, Merlino RL, Andreev SN. Dust ion-acoustic shocks in a Q machine device. Contrib Plasma Phys 2005;45:461. DOI: https://doi.org/10.1002/ctpp.200510052

Vranjes J. Gravitational instability problem of nonuniform medium. Astrophys Space Sci 1994;213:139. DOI: https://doi.org/10.1007/BF00627785

Verheest F, Shukla PK. Nonlinear waves in multispecies self-gravitating dusty plasmas. Physica Scripta 1997;55:83. DOI: https://doi.org/10.1088/0031-8949/55/1/014

Pakzad HR, Javidan K. Solitary waves in dusty plasmas with variable dust charge and two temperature ions. Chaos, Solitons and Fractals 2009;42:2904. DOI: https://doi.org/10.1016/j.chaos.2009.04.031

Downloads

Published

12-03-2014

How to Cite

[1]
P. K. Karmakar and B. Borah, “New Aspects on Stability Analysis of a Planar Charge-varying Collisional Dust Molecular Cloud with Finite Thermal Inertia”, Comm. Phys., vol. 24, no. 1, p. 45, Mar. 2014.

Issue

Section

Papers
Received 18-01-2014
Accepted 11-03-2014
Published 12-03-2014