Optical Phonon Modes and Electron-optical Phonon Interaction in Core-shell Semiconductor Quantum Wires

Nguyen Nhu Dat, Le Thanh Hai
Author affiliations

Authors

  • Nguyen Nhu Dat Communications in Physics, VAST
  • Le Thanh Hai

DOI:

https://doi.org/10.15625/0868-3166/24/4/3268

Abstract

Within the framework of the macroscopic dielectric continuum model the longitudinal optical (LO) phonon modes are derived for a cylindrical semiconductor quantum wire made of semiconductor 1 (well material) embedded in another finite semiconductor 2 (barrier material).  The phonon states of modes are given by solving the generalized Born-Huang equation. It is shown that there may exist four types of longitudinal optical phonon modes according to the concrete materials forming the wire. The dispersion equations for phonon frequencies with wave-vector components parallel to the wire are obtained. After having quantized the phonon field we derive the Fröhlich Hamiltonian describing the electron--LO-phonon interaction. The influence of the thickness of the barrier layer as well as the thin metallic shell on the phonon frequencies and their interaction with electrons is studied.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Duan X., Huang Y., and Lieber C.M., Nano Lett. 2 (2002) 487. DOI: https://doi.org/10.1021/nl025532n

Cui Y. and Lieber C.M., Science 291 (2001) 851. DOI: https://doi.org/10.1126/science.291.5505.851

Huang Y., Duan X., Cui Y., and Lieber C.M., Nano Lett. 2 (2002) 101. DOI: https://doi.org/10.1021/nl015667d

Cui Y., Wei Q., Park H., and Lieber C.M., Science 293 (2001) 1289. DOI: https://doi.org/10.1126/science.1062711

Karlsson K.F., Weman H., Dupertuis M.-A., Leifer K., Rudra A., and Kapon E., Phys. Rev. B70 (2004) 045302. DOI: https://doi.org/10.1103/PhysRevB.70.049901

Eugster C.C., del Alamo J.A., Rooks M.J., and Melloch M.R., Appl. Phys. Lett. 64 (1994) 3157. DOI: https://doi.org/10.1063/1.111324

Fischer S.F., Apetrii G., Kunze U., Schuh D., and Abstreiter G., Nature Physics 2 (2006) 91. DOI: https://doi.org/10.1038/nphys205

Bennett C.H. and DiVincenzo D.P., Nature 404 (2000) 247. DOI: https://doi.org/10.1038/35005001

Fan H.J., Werner P., and Zacharias M., Small 2 (2006) 700. DOI: https://doi.org/10.1002/smll.200500495

Leburton J.P., J. Appl. Phys. 56 (1984) 2850. DOI: https://doi.org/10.1063/1.333820

Constantinou N.C. and Ridley B.K., J. Phys.: Condens. Matter 1 (1989) 2283. DOI: https://doi.org/10.1088/0953-8984/1/12/013

Wendler L. and Kugler R., J. Phys.: Condens. Matter 6 (1994) 7857. DOI: https://doi.org/10.1088/0953-8984/6/39/007

Bennett C.R., Constatinou N.C., and Tanatar B., J. Phys.: Condens. Matter 7 (1995) L669. DOI: https://doi.org/10.1088/0953-8984/7/48/002

Mansour N.S., Sirenko Yu.M., Kim K.W., Littlejohn M.A.,Wang J., and Leburton J.P., Appl. Phys. Lett. 67 (1995) DOI: https://doi.org/10.1063/1.115253

Fai L.C., Teboul V., Monteil A., Maabou S., and Nsangou I., Condens. Matter Phys. 8 (2005) 639. DOI: https://doi.org/10.5488/CMP.8.3.639

Fasol G., Tanaka M., Sakaki H., and Horikosh Y., Phys. Rev. B38 (1988) 6056. DOI: https://doi.org/10.1103/PhysRevB.38.6056

Watt M., Sotomayor-Torres C.M., Arnot H.E.G., and Beaumont S.P., Semicond. Sci. Technol. 5 (1990) 285. DOI: https://doi.org/10.1088/0268-1242/5/4/001

Adu K.W., Xiong Q., Gutierrez H.R., Chen G., and Eklund P.C., Appl. Phys. A85 (2006) 287. DOI: https://doi.org/10.1007/s00339-006-3716-8

Spirkoska D., Abstreiter G., and Fontcuberta i Moral A., Nanotechnology 19 (2008) 435704. DOI: https://doi.org/10.1088/0957-4484/19/43/435704

Ren S.F. and Chang Y.C., Phys. Rev. B43 (1991) 11857. DOI: https://doi.org/10.1103/PhysRevB.43.11857

Zhu B.F., Phys. Rev. B44 (1991) 1926; Semiconduc. Sci. Technol. 7 (1992) B88.

Stroscio M.A., Kim K.W., Littlejohn A., and Chuang H., Phys. Rev. B42 (1990) 1488. DOI: https://doi.org/10.1103/PhysRevB.42.1488

Knipp P. and Reinecke T.L., Phys. Rev. B45 (1992) 9091. DOI: https://doi.org/10.1103/PhysRevB.45.9091

Enderlein R., Phys. Rev. B47 (1993) 2162. DOI: https://doi.org/10.1103/PhysRevB.47.2162

Bennett C.R. and Tanatar B., Phys. Rev. B55 (1997) 7165. DOI: https://doi.org/10.1103/PhysRevB.55.7165

Xie H.J., Chen C.Y., and Ma B.K., Phys. Rev. B61 (2000) 4827. DOI: https://doi.org/10.1103/PhysRevB.61.4827

Zhang L., Commun. Theor. Phys. 42 (2004) 459. DOI: https://doi.org/10.1088/0253-6102/42/3/459

Vartanian A.L., Int. J. Mod. Phys. B20 (2006) 3015. DOI: https://doi.org/10.1142/S0217979206035357

Zuo Z.W. and Xie H.J., J. Phys.: Condens. Matter 22 (2010) 025403. DOI: https://doi.org/10.1088/0953-8984/22/2/025403

OPTICAL PHONON MODES AND ELECTRON–OPTICAL PHONON INTERACTION ...

Constantinou N.C. and Ridley B.K., Phys. Rev. B41 (1990) 10622; ibid. B41 (1990) 10627. DOI: https://doi.org/10.1103/PhysRevB.41.10622

Stroscio M.A. and Dutta M., Phonons in Nanostructures, Cambridge Univ., Cambridge, (2001). DOI: https://doi.org/10.1017/CBO9780511534898

Ridley B.K., Electrons and Phonons in Semiconductor Multilayers, 2nd edn, Cambridge Univ., Cambridge,

(2009).

Ridley B.K., Phys. Rev. B47 (1993) 4592. DOI: https://doi.org/10.1103/PhysRevB.47.4592

Wang X.F. and Lei X.L., Solid State Commun. 91 (1994) 513. DOI: https://doi.org/10.1016/0038-1098(94)90365-4

Comas F., Cantarero A., Trallero-Giner C., and Moshinsky M., J. Phys.: Condens. Matter 7 (1995) 1789. DOI: https://doi.org/10.1088/0953-8984/7/9/006

Stavrou V.N., Bennett C.R., Al-Dossary O.M.M., and Babiker M., Phys. Rev., B63 (2001) 205304. DOI: https://doi.org/10.1103/PhysRevB.63.205304

Comas F., Camps I., Marques G.E., and Studart N., Semicond. Sci. Technol. 22 (2007) 229. DOI: https://doi.org/10.1088/0268-1242/22/3/010

Gradshteyn I.S. and Ryzhik I.M., Table of integrals, series, and products, 7th edn, Academic Press, New York,

Ridley B.K., Phys. Rev. B39 (1989) 5282. DOI: https://doi.org/10.1103/PhysRevB.39.5282

Downloads

Published

10-03-2015

How to Cite

[1]
N. N. Dat and L. T. Hai, “Optical Phonon Modes and Electron-optical Phonon Interaction in Core-shell Semiconductor Quantum Wires”, Comm. Phys., vol. 24, no. 4, p. 333, Mar. 2015.

Issue

Section

Papers
Received 19-06-2014
Published 10-03-2015