Electric Charging and Colloid Stability of Fabricated Nedle-Like \(\mbox{TiO}_{2}\) Nanoparticles
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/24/3S1/3267Keywords:
electrophoretic mobility, isoelectric point, 1pK Stern model, double layer relaxation, aggregation, hydrodynamic diameterAbstract
Charging and stability of needle-like TiO\(_{2}\) nanoparticles were studied. Measured isoelectric point (IEP) was pH~4 and lower than that of spherical ones pH~6. Heat treatment at 400\(\text{\r{}}\)C changed the IEP from 4 to 6. The shift is probably due to shape controller (ethylenediamine). The particles aggregate around IEP and thus are charge-stabilized. Experimental hydrodynamic diameters of needle-like particles showed a reasonably good agreement with the theoretical diameter. That is, the particles can be dispersed to primary particles. 1pK Stern and standard electrokinetic models describe electrophoretic mobility of needle-like TiO\(_{2}\), indicating that double layer relaxation is significant for needle-like TiO\(_{2}\).
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 09-01-2014
Published 25-09-2014