Vol. 23 No. 2 (2013)

The Influence of the Self-focusing Effect on the Optical Force Acting on Dielectric Particle Embedded in Kerr Medium

Hoang Van Nam
Ha Tinh Council of Science and Technology
Cao Thanh Le
Hatinh University
Ho Quang Quy
Academy of Military Science and Technology

Published 08-07-2013


  • Optical tweezer,
  • Optical force,
  • Kerr effect,
  • Nonlinear medium,
  • Self-focusing.

How to Cite

Nam, H. V., Le, C. T., & Quy, H. Q. (2013). The Influence of the Self-focusing Effect on the Optical Force Acting on Dielectric Particle Embedded in Kerr Medium. Communications in Physics, 23(2), 155. https://doi.org/10.15625/0868-3166/23/2/2732


The influence of the self-focusing effect arised from Kerr effect on the optical force acting on the dielecric particle embedded in the Kerr medium, which is irradiated by the Gaussian beam, is proposed to concern. The expressions of the optical forces with the nonlinear refractive index and nonlinear focal length are derived. Using them, the distribution of the optical forces in the trapping region of the optical tweezer is simulated and discussed for same distinguished case of the Kerr medium with different nonlinear coefficients. The results show that the stabe region of the optical tweezer depends on the nonlinear coefficient of refractive index. Moreover, the stable region could be brokendown with a critical value of the nonlinear coefficient of refractive index of the surrounding medium irradiated by Gaussian laser pulse described by given parameters as  intensity, duration and radius of beam waist.



Download data is not yet available.


Metrics Loading ...


  1. A. Ashkin, Phys. Rev. Lett. 24 (1970), pp. 156-159.
  2. A. Ashkin, J. M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11 (1986), pp. 288-290.
  3. S.C. Kuo, M. P. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2 (1992), pp. 16-24.
  4. F. M. Fazal and S. M. Block, Nature Photonics, Vol.5 (2011), pp.318-321.
  5. A. A. Ambardekar, Y. Q. Li, Opt. Lett. 30 (2005), pp. 1797-1799.
  6. J. L. Deng, Q. Wei, Y. Z. Wang, Y. Q. Li, Opt. Express. 13 (2006), pp.3673-3680.
  7. C. L. Zhao, L. G. Wang, X. H. Lu, Phys. Let. A (2006), pp. 502-506.
  8. L.G. Wang et al, Opt. Lett. 32 (2007), pp. 1393-1395.
  9. H. Q. Quy, M. V. Luu, IWP&A, Nha trang, Sept.10-14, (2008), pp.181-186.
  10. H. Kress, Ernest H. K. Stelzer, G. Griffiths, and A. Rohrbach, Phys. Rev. E 71, 061927 (2005).
  11. E.V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, J. of Biomedical Optics 17 (2012), 101510.
  12. Q.Q. Ho, J. Phys. Scien. and Appl. Vol.2, No.9 (2012) 301-305.
  13. Q.Q. Ho and V. N. Hoang, J. Phys. Scien. and Appl. Vol.2, No. 10 (2012) 414-419.
  14. R. W. Boyd, “Nonlinear optics,” Academic Press. Inc. (1992) 261.
  15. B.E.A. Saleh and M.C. Teich, “Fundamentals of photonics,” A Willey-Interscience Publication, John Willey & Sons, Inc., New York (1991) 92-93.
  16. Keir C. Neuman and Steven M. Block, “Optical trapping,” Review of Science Intruments, Vol. 75, No.9 (2004), pp.2787-2809.
  17. H. Q. Quy et al, Chines Optics Letters 8 (2010) 332-334.