Vol. 23 No. 1 (2013)
Papers

Influence of Reaction Temperature on Optical Property of Mn-Doped ZnS Nanoparticles

Bui Hong Van
Hanoi University of Science, Vietnam National University, Hanoi
Pham Van Ben
Hanoi University of Science, Vietnam National University, Hanoi
Hoang Nam Nhat
University of Engineering and Technology, Vietnam National University, Hanoi

Published 15-04-2013

Keywords

  • Mn-doped ZnS,
  • photoluminescence,
  • photoluminescence excitation,
  • absorption spectra

How to Cite

Van, B. H., Ben, P. V., & Nhat, H. N. (2013). Influence of Reaction Temperature on Optical Property of Mn-Doped ZnS Nanoparticles. Communications in Physics, 23(1), 75. https://doi.org/10.15625/0868-3166/23/1/2490

Abstract

The reaction temperature has essential effect on quality of the product synthesized by hydrothermal method. We report here the variation of the optical characteristics of Mn-doped ZnS nanocrystallites prepared by mean of the stated method from Zn(CH$_{3}$COO)$_{2}$.2H$_{2}$O, Mn(CH$_{3}$COO)$_{2}$.4H$_{2}$O and Na$_{2}$S$_{2}$O$_{3}$.5H$_{2}$O as the precursors. The reaction temperature was set to vary from 120\r{}C to 240\r{}C at a constant reaction time of 15 hours. The XRD patterns showed that, for the reaction temperature range from 120 to 160\r{}C, the obtained products possessed a cubic $T_d^2 - F\overline 4 3m$ and a wurtzite $C_{6v}^4 - P6_3 mc$structure, in which the cubic phase was dominant. At the temperature range from 180 to 240\r{}C, the structures exhibited a cubic phase with the lattice constant increased from 5.41 to 5.43 {\AA}. The photoluminescence spectra showed that with the increase of reaction temperature from 120 to 240\r{}C the intensity of a blue band around 425 - 500 nm (attributed to both Zn, S vacancies) gradually decreased while the intensity of a yellow-orange band at 585 nm (attributed to the $^{4}$T$_{1}(^{4}$G) - $^{6}$A$_{1}(^{6}$S) transition of Mn$^{2 + }$ ions) was enhanced and reached maximum at 220\r{}C. The excitation spectra of the 585 nm band recorded at 160\r{}C showed a band at 335 nm which should be assigned to the near band-edge absorption. With increasing temperature to 200-240\r{}C the new bands appeared at 390, 430, 467, 494 nm. The intensity of these bands increased with temperature and achieved the maxima at 220\r{}C. They should be attributed to the absorption transitions of electrons from ground state $^{6}$A$_{1}(^{6}$S) to excited states$^{ 4}$E($^{4}$D); $^{4}$T$_{2}(^{4}$D); $^{4}$A$_{1}(^{4}$G) - $^{4}$E($^{4}$G); $^{4}$T$_{2}(^{4}$G) of Mn$^{2 + }$(3d$^{5})$ ions, respectively. The bands at 467, 494 nm only exposed clearly in the absorption spectra at 220\r{}C and 240\r{}C.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Weichen, Ramaswami Sammynaiken, Yining Huang, Jan-Olle Malm, Reine Wallenberg, Jan-Olov
  2. Bovin, Valery Zwiller, and Nicholas A.Kotov, Journal of Applied Physics 89( 2) (2001) 1120-1129
  3. Daisuke ADachi, Shigeki Hasui, Toshihiko Toyama, and Hiroaki Okamoto, Appl. Phys. Lett. 77(9)
  4. (2000) 1301 -1303
  5. Xuan Xue, Jiafu Chen, and Yong Hu, Materials Letters 61 (2007) 115-118
  6. K. R.Murali and S.Kumaresan, Chacogenide Letters 6(1) (2009) 17-22
  7. A. D. Dinsmore, D. S. Hsu, S. B. Qadri, J. O. Cross, T. A. Kenedy, H. F. Gray, and B. R. Ratnan,
  8. Journal of Applied Physics 88(95) (2000) 4985-4993
  9. Changlong Jiang, Wangqun Zhang, Guifu Zou, Weicao Yu, and Yitai Qian, Materials Chemistry and
  10. Physics 103 (2007) 24-27
  11. Sbiswas and Skar, Nanotechnology 19 (2008) 045710(11 pp).
  12. Masous Salavati-Niasari, Mohammad Reza Loghman-Estarki. Fatemeh Davar, Journal of Alloys and
  13. Compounds 475 (2009) 782-788
  14. Li Zhang and Liangbao Yang, Cryst. Res.Technol. 43(10) (2008) 1022-1025
  15. Weichen, Zhanguo Wang, Zhao Jun Lin Yan Xu, and Lanying Lin, J. Mater. Sci. Technol. 13 (1997)
  16. -404
  17. Xiaosheng Fang and Lide Zhang, J. Mater. Sci. Technol. 22(6) (2006) 721-736
  18. Zhi Gang Chen, Jin Jou, and Dai-Wei Wng, Adv. Funt. Mater. 19 (2009) 484-490
  19. Ying- Chun Zhu, Yoshio Bando, and Dong Feng Xue, Appl. Phys. Lett. 82(11) (2003) 1769-1771
  20. D.Denzler, M.Olschewski and K.Sattler, J. Appl. Phys. 84(5) (1998) 2841-2845
  21. R. N. Bhargava, D. Gallagher, X.Hong and Nurmikko, Phys. Rev. Lett. 72 (1994) 416-419
  22. Bin Xia, I. Wuled Lenggoro, and Kikuo Okuyama, Chem. Mater. 14 (2002) 4960-4974
  23. P. H. Borse, D. Srinivas, R. F. Shinde, S. K. Date, W. Vogel, S. K. Kulkarni, Physical Review
  24. B60(12) (1999) 8659- 8664
  25. M. Stefan, S. V. Nistor, D. Ghica, C. D. Mateescu, M. Nikl, and Kucerkova, Physical Review B83
  26. (2011) 04351