Dielectric and Relaxor Ferroelectric Properties in \(\text{PZT-PMnN-PSbN}\) Ceramics


  • Than Trong Huy Hue University
  • Nguyen Dinh Tung Luan Industrial College of Hue
  • Truong Van Chuong Hue Science University
  • Le Van Hong Institute of Material Science




relaxor ferroelectric, PZT-PMnN-PSbN, Columbite precursor rout, diffuse phase transition, nanopolar regions


The rhombohedral perovskite 0.9Pb(Zr0.5Ti0.5)O3 – xPb(Mn1/3Nb1/3)O3 – (0.1-x)Pb(Sb1/2Nb1/2)O3, x = 0.05; 0.06; 0.07; 0.08; 0.09; 0.1 (PZT – PMnN – PSbN) ceramic was synthesized by the Columbite precursor rout. The temperature dependence of dielectric constant and its loss in a frequency region of 0.1 kHz – 500 kHz were measured in aim to search the weak-field dielectric response in PZT-PMnN-PSbN systems. A high value of εmax > 20000 was found at 1 kHz with the temperature Tm of around 575K. Using an extended Curie-Weis law the diffuse phase transition was determined. Fitting by using Vogel – Fulcher and power relationship indicated that the polarization fluctuation above the static freezing temperature behaves like as a spin-glass one. Cole – Cole analyses showed the non – Debye type relaxation in the system.


Download data is not yet available.

Author Biography

Than Trong Huy, Hue University

Vice dean of Faculty of Technologies


A. I. Kingon, S. K. Streiffier, C. Basceri and S. R. Summerfelt, Mat. Res. Bull. 21 (1996) 46.

D. L. Polla and L. F. Francis, Mat. Res. Bull. 21 (1996) 59.

S. Saha and T. P. Sinha, J. Phys.; Condens. Matter 14 (2002) 249.

S. K. Sinha, R. N. P. Choudhary, S. N. Choudhary, T. P. Sinha, Materials Letters 51 (2001) 336.

L. E. Cross, Ferroelectrics, 76, 241 (1987); (b) L. E. Cross, Ferroelectrics 151 (1994) 305

S. B. Majumdar, S. Bhattacharyya and R. S. Katiyar, J. Appl. Phys. 99 (2006) 024108.

M. Maglion and M. Belkaoumi, Phys. Rev. B 45 (1992) 2029.

G. Burns and F. H. Dacol, Solid State Commun. 48 (1983) 853.

J.Chen, H.M. Chan, M.P. Harmer, J.Am. Ceram, Soc., 72(4) (1989) 593.

Y. Xu, Ferroelectric, Materials and Their Applications, North Holland (1991)

S.P. Singh, A.K. Singh, D. Pandey, J. Mater. Res. 18 (2003) 2677

S.B. Lee, K.H. Lee, H. Kim, Jpn. J. Appl. Phys. 41 (2002) 5266.

D.R. Chen, Y.Y. Guo, Electron. Element. Mater 1 (1982) 25.

Sinclair D C  West A R, J Appl Phys, 66 (1989) 38351.

J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, Wiley, New York, (1987).

K. S. Cole and R. H. Cole J. Chem. Phys. 9 (1941). 341

G. A. Smolensky, A. I. Agranovskaya, S. N. Popov and V. A. Isupov, Sov. Phys. Tech. Phys. 3 (1958) 1981.

N. Setter and L. E. Cross, J. Appl. Phys. 51 (1980) 4356.

C. A. Randall and A. S. Bhalla, Jpn. J. Appl. Phys. 29 (1990) 327.

X. He, X. Zeng, X. Zheng, P. Qiu, W. Cheng, A. Ding, Journal of Physics: Conference Series 152 (2009) 012068.

K. Bormanis, A. I. Burkhanova, A. V. Shil′nikova, A. Sternberg, S. A. Satarova, Journal of Optoelectronics and Advanced Materials Vol. 6(1) (2004) 341.

R. Pirc and R. Blinc, Physical review B 76 (2007) 020101.

B. Mihailova, B.J. Maier, N. Waeselmann, C. Paulmann, M. Gospodinov, U. Bismayer (2011) 12th European Meeting on Ferroelectricity, 3A-2O




How to Cite

Huy, T. T., Luan, N. D. T., Chuong, T. V., & Hong, L. V. (2012). Dielectric and Relaxor Ferroelectric Properties in \(\text{PZT-PMnN-PSbN}\) Ceramics. Communications in Physics, 22(3), 229. https://doi.org/10.15625/0868-3166/22/3/2263




Most read articles by the same author(s)