Forthcoming

Effects of asymmetry in Kondo channels on thermoelectric efficiency

T. K. T. Nguyen, T. B. Cao, T. A. Chu, T. L. H. Nguyen, H. Q. Nguyen, M. N. Kiselev
Author affiliations

Authors

  • T. K. T. Nguyen Institute of Physics, Vietnam Academy of Science and Technology https://orcid.org/0000-0003-1700-1053
  • T. B. Cao Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
  • T. A. Chu Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
  • T. L. H. Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
  • H. Q. Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
  • M. N. Kiselev The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151, Trieste, Italy

DOI:

https://doi.org/10.15625/0868-3166/21659

Abstract

We revisit an asymmetric two-channel charge Kondo model, which has been studied in the [Phys. Rev. B  82 (2010) 113306]. A nano-device modelling two-channel Kondo physics is a large metallic quantum dot which is embedded into a two-dimensional electron gas (2DEG) and connected strongly to two electrodes through two almost transparent single-mode quantum point contacts. The 2DEG is in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526 (2015) 233]. The reflection amplitudes at the quantum point contacts are asymmetric. We find that the thermopower and the figure of merit are decreased but the Kondo resonance width and Lorenz number in the vicinity of the Coulomb peak are lifted due to the effects of asymmetry in Kondo channels. We propose the method to improve the thermoelectric efficiency of the device.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] T. J. Seebeck, Über den Magnetismus der galvanischen Kette, Abh. Akad. Wiss. Berlin 1820-21 (1822) 289.

[2] J. F. Li, W.S. Liu, L.D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2 (2010) 152.

[3] Y. Du, K. F. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, T. Lin, Thermoelectric fabrics: toward power generating clothing, Sci. Rep. 5 (2015) 6144.

[4] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ. Sci. 2 (2009) 466.

[5] G. Benenti, G. Casati, K. Saito, and R. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694 (2017) 1.

[6] D. B. Karki, Coulomb blockade oscillations of heat conductance in the charge Kondo regime, Phys. Rev. B102 (2020) 245430.

[7] Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, H. Grabert and M. H. Devoret, Plenum Press, New York (1992).

[8] K. Flensberg, Capacitance and conductance of mesoscopic systems connected by quantum point contacts, Phys. Rev. B 48 (1993) 11156.

[9] K. A. Matveev, Coulomb blockade at almost perfect transmission, Phys. Rev. B 51 (1995) 1743.

[10] A. Furusaki, K. A. Matveev, Theory of strong inelastic cotunneling, Phys. Rev. B 52 (1995) 16676.

[11] A. V. Andreev, K. A. Matveev, Coulomb blockade oscillations in the thermopower of open quantum dots, Phys.

Rev. Lett. 86 (2001) 280; Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling, Phys. Rev. B 66 (2002) 045301.

[12] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna and F. Pierre, Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states, Nature 526 (2015) 233.

[13] Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon, and F. Pierre, Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit, Science 360 (2018) 1315.

[14] A. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, 1993.

[15] P. Nozières and A. Blandin, Kondo effect in real metals, J. Phys. France 41 (1980) 193.

[16] L. D. Landau, The Theory of a Fermi Liquid, Sov. Phys. JETP 3 (1957) 920.

[17] T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov, Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels, Phys. Rev. B 82 (2010) 113306.

[18] R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W. Molenkamp, Thermopower of a Kondo spincorrelated quantum dot, Phys. Rev. Lett. 95 (2005) 176602.

[19] T. K. T. Nguyen and M. N. Kiselev, Seebeck effect on a weak link between Fermi and non-Fermi liquids, Phys. Rev. B 97 (2018) 085403.

[20] T. K. T. Nguyen and M. N. Kiselev, Heat conductance oscillations in two weakly connected charge Kondo circuits, Commun. Phys. 32, 331 (2022).

[21] T. K. T. Nguyen, H. Q. Nguyen, and M. N. Kiselev, Thermoelectric transport across a tunnel contact between two charge Kondo circuits: Beyond perturbation theory, Phys. Rev. B 109 (2024) 115139.

[22] L. Onsager, Reciprocal relations in irreversible processes. I., Phys. Rev. 37, 405 (1931); L. Onsager, Reciprocal relations in irreversible processes. II., Phys. Rev. 38 (1931) 2265.

[23] G. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. USA 93 (1996) 7436.

[24] M. N. Kiselev, Generalized Wiedemann-Franz law in a two-site charge Kondo circuit: Lorenz ratio as a manifestation of the orthogonality catastrophe, Phys. Rev. B 108 (2023) L081108.

Downloads

Published

15-12-2024

How to Cite

[1]
T. K. T. Nguyen, T. B. Cao, T. A. Chu, T. L. H. Nguyen, H. Q. Nguyen, and M. N. Kiselev, “Effects of asymmetry in Kondo channels on thermoelectric efficiency”, Comm. Phys., vol. 34, no. 4, p. 317, Dec. 2024.
Received 04-10-2024
Accepted 06-12-2024
Published 15-12-2024