Reaction-rate function of proton-deuteron radiative capture within potential model

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/21631

Keywords:

radiatvie capture, potential model, proton-deuteron, astrophysical S-factor

Abstract

The proton-deuteron (pD) radiative capture reaction plays a crucial role in primordial nucleosynthesis. The astrophysical S-factor is calculated using a phenomenological potential model, considering both electric dipole (E1) and magnetic dipole (M1) transitions. The resulting S-factor is found to be in good agreement with recent experimental data. In addition, an approximate polynomial expression for the reaction-rate function is provided.

Downloads

Metrics

PDF views
2

References

C. Wu, The Big Bang nucleosynthesis abundances of the light elements using improved thermonuclear reaction rates, Gen. Relativ. Gravit. 55 (2023) 48.

V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile et al., The baryon density of the Universe from an improved rate of deuterium burning, Nature 587 (2020) 210.

R. J. Cooke, M. Pettini and C. C. Steidel, One percent determination of the primordial deuterium abundance, Astrophys. J. 855 (2018) 102.

N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini et al., Planck 2018 results-VI. Cosmological parameters, Astronomy & Astrophysics 641 (2020) A6.

A. Coc, Primordial nucleosynthesis, J. Phys.: Conf. Ser. 665 (2016) 012001.

N. A. Dao, T. A. Hoang, H. T. Do and T. H. Nguyen, Analysis of E1 transition in pd radiative capture within potential model, HCMUE J. Sci. 21 (2024) 424.

N. L. Anh, D. N. Anh, L. T. Quyen, N. D. Phuc, P. T. H. Chau and T. D. T. Le, Magnetic dipole transition in proton-deuteron radiative capture at BBN energies within potential model, Phys. Scr. 99 (2024) 065026.

http://parthenope.na.infn.it/.

N. Le Anh and B. Minh Loc, Low-energy 7Li(n,γ)8Li and 7Be(p,γ)8B radiative capture reactions within the Skyrme Hartree-Fock approach, Phys. Rev. C 106 (2022) 014605.

G. M. Griffiths, E. A. Larson and L. P. Robertson, The reaction d(p,γ)3He below 50 keV, Can. J. Phys. 41 (1963) 724.

G. J. Schmid, R. M. Chasteler, C. M. Laymon, H. R. Weller, R. M. Prior and D. R. Tilley,

Polarized proton capture by deuterium and the 2H(p, γ)3He astrophysical S factor,

Phys. Rev. C 52 (1995) R1732.

L. Ma, H. J. Karwowski, C. R. Brune, Z. Ayer, T. C. Black, J. C. Blackmon et al.,

Measurements of 1H(d→,γ)3He and 2H(p→,γ)3He at very low energies,

Phys. Rev. C 55 (1997) 588.

C. Casella, H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini et al.,

First measurement of the d(p,γ)3He cross section down to the solar Gamow peak,

Nuclear Physics A 706 (2002) 203.

V. M. Bystritsky, S. Gazi, J. Huran, G. N. Dudkin, A. R. Krylov, A. Lysakov et al.,

Studying the D(p, γ)3He reaction in zirconium deuteride within the proton energy range of 9–35 keV,

Phys. Part. Nucl. Lett. 12 (2015) 550.

I. Tišma, M. Lipoglavšek, M. Mihovilović, S. Markelj, M. Vencelj and J. Vesić,

Experimental cross section and angular distribution of the 2H(p, γ)3He reaction at Big-Bang nucleosynthesis energies,

Eur. Phys. J. A 55 (2019) 137.

S. Turkat, S. Hammer, E. Masha, S. Akhmadaliev, D. Bemmerer, M. Grieger et al.,

Measurement of the 2H(p,γ)3He S factor at 265–1094 keV,

Phys. Rev. C 103 (2021) 045805.

L. E. Marcucci, G. Mangano, A. Kievsky and M. Viviani,

Implication of the proton-deuteron radiative capture for big bang nucleosynthesis,

Phys. Rev. Lett. 116 (2016) 102501.

Downloads

Published

11-03-2025

How to Cite

[1]
N. A. Dao, H. T. Do, and L. A. Nguyen, “Reaction-rate function of proton-deuteron radiative capture within potential model”, Comm. Phys., vol. 35, no. 1, p. 51, Mar. 2025.

Issue

Section

Papers
Received 01-10-2024
Accepted 05-02-2025
Published 11-03-2025

Funding data