Multiple mobility edges in quasi-periodic mosaic lattices revisited: A numerical study based on time-dependent reflection

Author affiliations

Authors

  • Ba Phi nguyen Department of Basic Sciences, Mientrung University of Civil Engineering, 24 Nguyen Du, Tuy Hoa, Phu Yen https://orcid.org/0000-0002-7050-2140

DOI:

https://doi.org/10.15625/0868-3166/21022

Keywords:

Quasi-periodic mosaic lattices; Anderson localization; mobility edges; time-dependent reflection.

Abstract

The dynamics of a short wave packet in one-dimensional quasi-periodic lattices with mosaic modulated on-site potentials is investigated numerically. This model is characterized by the modulation period \(\kappa\) and the quasi-periodic potential strength \(\lambda\). For parabolic wave packets with a given central energy \(E_{0}\), we calculate the averaged time-dependent reflectance, \(\langle R(t) \rangle\), for various values of $\kappa$ and \(\lambda\). From the extensive numerical calculations, we show that there exist multiple mobility edges in such a model with the number of mobility edges to be always equal to \(2(\kappa-1)\).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

999

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492.

I. M. Lifshits, A. S. Gredeskul and L. A. Pastur, Introduction to the theory of disordered systems, Wiley-VCH, 1988.

P. Sheng, Introduction to wave scattering, localization, and mesoscopic phenomena, vol. 88. Springer Berlin, Heidelberg, 2006.

A. Lagendijk, B. A. van Tiggelen and D. Wiersma, Fifty years of Anderson localization, Phys. Today 62 (2009) 24.

E. Abrahams, P. W. Anderson, D. C. Licciardello and T. V. Ramakrishnan, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42 (1979) 673.

P. G. Harper, Single Band Motion of Conduction Electrons in a Uniform Magnetic Field, Proc. Phys. Soc. A 68 (1955) 874.

S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel. Phys. Soc. 3 (1980) 133.

P. A. Lee and T.V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57 (1985) 287.

F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80 (2008) 1355.

G. Roati et al., Anderson localization of a non-interacting Bose–Einstein condensate, Nature 453 (2008) 895.

Y. Lahini et al., Observation of a Localization Transition in Quasiperiodic Photonic Lattices, Phys. Rev. Lett. 103 (2009) 013901.

J. Biddle, D. J. Priour, Jr. B. Wang and S. Das Sarma, Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-André models, Phys. Rev. B 83 (2011) 075105.

H. P. Lüschen et al., Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice, Phys. Rev. Lett. 120 (2018) 160404.

M. Rossignolo and L. Dell’Anna, Localization transitions and mobility edges in coupled Aubry-André chains, Phys. Rev. B 99 (2019) 054211.

R. Wang, X. M. Yang and Z. Song, Localization transitions and mobility edges in quasiperiodic ladder, J. Phys.: Condens. Matter 33 (2021) 365403.

A.-M. Guo, X. C. Xie and Q.-F. Sun, Delocalization and scaling properties of low-dimensional quasiperiodic systems, Phys. Rev. B 89 (2014) 075434.

B. Huang and W. V. Liu, Moiré localization in two-dimensional quasiperiodic systems, Phys. Rev. B 100 (2019) 144202.

N. F. Mott, Metal–insulator transitions, Phys. Today 31 (1978) 42.

S. Das Sarma, A. Kobayashi and R. E. Prange, Proposed Experimental Realization of Anderson Localization in Random and Incommensurate Artificially Layered Systems, Phys. Rev. Lett. 56 (1986) 1280.

J. Biddle and S. Das Sarma, Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization, Phys. Rev. Lett. 104 (2010) 070601.

A. Purkayastha, A. Dhar and M. Kulkarni, Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge, Phys. Rev. B 96 (2017) 180204R.

F. A. An, Eric J. Meier and B. Gadway, Engineering a Flux-Dependent Mobility Edge in Disordered Zigzag Chains, Phys. Rev. X 8 (2018) 031045.

Y. Wang et al., One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges, Phys. Rev. Lett. 125 (2020) 196604.

Q.-B. Zeng, R. Lü and L. You, Topological superconductors in one-dimensional mosaic lattices, EPL 135 (2021) 17003.

Y. Liu, Y. Wang, X.-J. Liu, Q. Zhou and S. Chen, Exact mobility edges, PT-symmetry breaking, and skin effect in one-dimensional non-Hermitian quasicrystals, Phys. Rev. B 103 (2021) 014203.

Q.-B. Zeng and R. Lü, Topological phases and Anderson localization in off-diagonal mosaic lattices, Phys. Rev. B 104 (2021) 064203.

L. Gong, Exact mobility edges in one-dimensional mosaic lattices inlaid with slowly varying potentials, Adv. Theory Simul. 4 (2021) 2100135.

S. D. Sarma, M. Freedman and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1 (2015) 15001.

S. E. Skipetrov and A. Sinha, Time-dependent reflection at the localization transition, Phys. Rev. B 97 (2018) 104202.

B. P. Nguyen, D. K. Phung and K. Kim, Quasiresonant diffusion of wave packets in one-dimensional disordered mosaic lattices, Phys. Rev. B 106 (2022) 134204.

X. Li, X. Li and S. Das Sarma, Mobility edges in one-dimensional bichromatic incommensurate potentials, Phys. Rev. B 96 (2017) 085119.

B. White, P. Sheng, Z. Q. Zhang and G. Papanicolaou, Wave localization characteristics in the time domain, Phys. Rev. Lett. 59 (1987) 1918.

M. Titov and C. W. J. Beenakker, Signature of Wave Localization in the Time Dependence of a Reflected Pulse, Phys. Rev. Lett. 85 (2000) 3388.

S. E. Skipetrov and B. A. van Tiggelen, Dynamics of weakly localized waves, Phys. Rev. Lett. 92 (2004) 113901.

S. E. Skipetrov and B. A. van Tiggelen, Dynamics of Anderson localization in open 3D media, Phys. Rev. Lett. 96 (2006) 043902.

Downloads

Published

05-09-2024

How to Cite

[1]
P. B. Nguyen, “Multiple mobility edges in quasi-periodic mosaic lattices revisited: A numerical study based on time-dependent reflection”, Comm. Phys., vol. 34, no. 3, p. 249, Sep. 2024.

Issue

Section

Papers
Received 25-06-2024
Accepted 26-08-2024
Published 05-09-2024