Dirac CP violation phase in the neutrino sector with A4 flavour symmetry

Author affiliations

Authors

  • Phi Quang Van Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi 11108, Vietnam
  • Nguyen Anh Ky Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi 11108, Vietnam https://orcid.org/0000-0003-0471-197X
  • Tien Manh Tran Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam https://orcid.org/0009-0002-6463-4902

DOI:

https://doi.org/10.15625/0868-3166/20171

Keywords:

CP viol, Jarlskog invariant,, neutrino mass, perturbation

Abstract

CP violation is one of the problems of the physics beyond the Standard Model. It can happen in both the quark and the lepton sectors. In the present paper, following the work arXiv:1602.07437 [hep-ph], this problem is re-considered in the lepton sector (neutrino subsector) within an extended Standard Model with an $A_4$ flavour discrete symmetry with a new and more convenient parametrization. As a result, a perturbative mixing matrix is derived. Then, the Dirac CP violation phase \(\delta_{CP}\equiv \delta\) and the Jarlskog invariant \(J_{CP}\equiv J\) are analytically obtained from theoretically derived equations leading to the solutions \(\delta= \pm {1\over 2}\pi\) . Between the two solutions, the solution \(\delta=-{1\over 2}\pi\) (i.e., \({3\over 2}\pi\)) is more preferable as it is more consistent with the experimental data for the inverted ordering of the neutrino masses for the gobal fit [PDG] or the normal ordering [T2K, NO\(\nu\)A]). A relation between $\delta$ and $J$ is also given in terms of new parameters. The maximum value of Jarlskog invariant \(|J^{max}|\) is found in the range $0.0237 < |J^{max}| < 0.034$, covering the 2022-2023 global fit values [PDG]: \(|J_{PDG}^{max}|= 0.0336\pm 0.0006 ~(\pm 0.0019)\) at \(1\sigma ~(3\sigma\)). Other values of J can be determined by the ralation \(J (\delta)\) and approximated by Fig. 2. between two solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

D. J. Griffiths, “Introduction to elementary particles”, John Wiley Sons, New York, 1987. DOI: https://doi.org/10.1002/9783527618460

H. K. Quang and X. Y. Pham, “Elementary particles and their interactions: concepts and phenomena”, Springer,

Berlin, 1998.

M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory”, Addison-Wesley, 1995.

, J.R. Fry, “CP violation and the standard model”, 2000 Rep. Prog. Phys. 63 117”. DOI: https://doi.org/10.1088/0034-4885/63/2/202

, G.C. Branco, “CP violation in standard model and beyond”, CERN-TH.7176/94.

J.Ellis,“PhysicsBeyondtheStandardModel”,Nucl.Phys.A827,187C-198C(2009);[arXiv:0902.0357[hep-ph]]. DOI: https://doi.org/10.1016/j.nuclphysa.2009.05.034

Phi Quang Van, Tran Tien Manh and Nguyen Anh Ky, in preparation.

Y. Fukuda et al. [Super-Kamiokande], “Study of the atmospheric neutrino flux in the multi-GeV energy range”,

Phys. Lett. B 436, 33-41 (1998) [arXiv:hep-ex/9805006 [hep-ex]].

Y. Fukuda et al. [Super-Kamiokande], “Evidence for oscillation of atmospheric neutrinos”, Phys. Rev. Lett. 81,

-1567 (1998); [arXiv:hep-ex/9807003 [hep-ex]].

Q. R. Ahmad et al. [SNO], “Measurement of the rate of νe + d → p + p + e− interactions produced by 8 B solar

neutrinos at the Sudbury Neutrino Observatory”, Phys. Rev. Lett. 87, 071301 (2001); [arXiv:nucl-ex/0106015

[nucl-ex]].

Q. R. Ahmad et al. [SNO], “Direct evidence for neutrino flavor transformation from neutral current interactions

in the Sudbury Neutrino Observatory”, Phys. Rev. Lett. 89, 011301 (2002); [arXiv:nucl-ex/0204008 [nucl-ex]]. [12] Q. R. Ahmad et al. [SNO], “Measurement of day and night neutrino energy spectra at SNO and constraints on

neutrino mixing parameters”, Phys. Rev. Lett. 89, 011302 (2002); [arXiv:nucl-ex/0204009 [nucl-ex]].

S. Bilenky, “Introduction to the physics of massive and mixed neutrinos”, Lect. Notes Phys. 947, pp.1-273 (2018), DOI: https://doi.org/10.1007/978-3-319-74802-3_1

Springer, 2018.

T.D.LeeandC.N.Yang,“Questionofparityconservationinweakinteractions”,Phys.Rev.104,254-258(1956). [15] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, “Experimental test of parity conservation

in β decay”, Phys. Rev. 105, 1413-1414 (1957). DOI: https://doi.org/10.1103/PhysRev.105.1413

J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, “Evidence for the 2π decay of the K20 meson”, Phys.

Rev. Lett. 13, 138-140 (1964).

A. Alavi-Harati et al. [KTeV], “Observation of direct CP violation in KS,L → ππ decays”, Phys. Rev. Lett. 83,

-27 (1999); [arXiv:hep-ex/9905060 [hep-ex]].

V. Fanti et al. [NA48], “A New measurement of direct CP violation in two pion decays of the neutral kaon”, Phys.

Lett. B 465, 335-348 (1999); [arXiv:hep-ex/9909022 [hep-ex]].

R. L. Workman et al. [Particle Data Group], “Review of Particle Physics”, PTEP 2022, 083C01 (2022).

E. Kou et al. [Belle-II], “The Belle II physics book”, PTEP 2019, no.12, 123C01 (2019) [erratum: PTEP 2020,

no.2, 029201 (2020)]; [arXiv:1808.10567 [hep-ex]].

K. Abe et al. [T2K], “Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations”,

Nature 580, no.7803, 339-344 (2020) [erratum: Nature 583, no.7814, E16 (2020)]; [arXiv:1910.03887 [hep-ex]]. [22] P. Deka and K. Bora, “Sensitivity of octant of θ23, CP violation and mass hierarchy in NOνA with multinucleon

and detector effects”; [arXiv:2308.03702 [hep-ph]].

N. Anh Ky, P. Quang Va ̆n and N. T. Hng Vaˆn, “A neutrino mixing model based on an A4 × Z3 × Z4 flavour

symmetry”, Phys. Rev. D 94, no.9, 095009 (2016); [arXiv:1610.00304 [hep-ph]].

D. N. Dinh, N. Anh Ky, P. Q. Va ̆n and N. T. H. Vaˆn, “A see-saw scenario of an A4 flavour symmetric standard

model”; [arXiv:1602.07437 [hep-ph]].

P. B. Denton, J. Gehrlein and R. Pestes, “CP -violating neutrino nonstandard interactions in long-baseline- accelerator data”, Phys. Rev. Lett. 126, no.5, 051801 (2021); [arXiv:2008.01110 [hep-ph]]. DOI: https://doi.org/10.1103/PhysRevLett.126.051801

M. J. Dolan, T. P. Dutka and R. R. Volkas, “Dirac-phase thermal leptogenesis in the extended type-I seesaw model”, JCAP 06, 012 (2018); [arXiv:1802.08373 [hep-ph]]. DOI: https://doi.org/10.1088/1475-7516/2018/06/012

H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, “Non-Abelian discrete symmetries in particle physics”, Prog. Theor. Phys. Suppl. 183, 1-163 (2010); [arXiv:1003.3552 [hep-th]]. DOI: https://doi.org/10.1143/PTPS.183.1

M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction”, Prog. Theor. Phys. 49, 652-657 (1973) DOI: https://doi.org/10.1143/PTP.49.652

M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, “Implications of A4 modular symmetry on neutrino mass, mixing and leptogenesis with linear seesaw”, Phys. Dark Univ. 36, 101027 (2022); [arXiv:2007.00545 [hep-ph]]. DOI: https://doi.org/10.1016/j.dark.2022.101027

M. Abbas, “Fermion masses and mixing in modular A4 symmetry”, Phys. Rev. D 103, no.5, 056016 (2021); [arXiv:2002.01929 [hep-ph]]. DOI: https://doi.org/10.1103/PhysRevD.103.056016

S. Bilenky, “Introduction to the physics of massive and mixed neutrinos”, Springer, Berlin, 2010. DOI: https://doi.org/10.1007/978-3-642-14043-3

R. N. Mohapatra and P. B. Pal, “Massive neutrinos in physics and astrophysics”, World Sci. Lect. Notes Phys. 60,

(1998), [World Sci. Lect. Notes Phys. 72, 1 (2004)].

VedranBrdar, AlexanderJ.Helmboldt,a, ShoIwamoto, andKaiSchmitz,”Type-I Seesaw as the Common Origin of

Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale”,Phys. Rev. D 100, 075029 (2019). DOI: https://doi.org/10.1103/PhysRevD.100.075029

P. Minkowski, “μ → eγ at a rate of one out of 109 muon decays?”, Phys. Lett. B 67, 421-428 (1977). DOI: https://doi.org/10.1016/0370-2693(77)90435-X

M. Gell-Mann, P. Ramond, R. Slansky (1979), “Complex spinors and unified theories in supergravity”, (Work-

shop proceedings, Stony Brook, 27-29 September 1979, eds. P. Van Nieuwenhuizen and D. Z. Freedman), North-

Holland, Amsterdam (1979), p. 341 DOI: https://doi.org/10.1007/978-94-009-9556-7_25

R. N. Mohapatra and G. Senjanovic, “Neutrino mass and spontaneous parity nonconservation”, Phys. Rev. Lett.

, 912 (1980).

J. Schechter and J. W. F. Valle, “Neutrino masses in SU(2) x U(1) theories”, Phys. Rev. D 22, 2227 (1980). DOI: https://doi.org/10.1103/PhysRevD.22.2227

J. Schechter and J. W. F. Valle, “Neutrino decay and spontaneous violation of lepton number”, Phys. Rev. D 25, DOI: https://doi.org/10.1103/PhysRevD.25.774

(1982).

J. J. Sakurai and J. Napolitano, “Modern quantum mechanics”, Cambridge university press, 2020. DOI: https://doi.org/10.1017/9781108587280

P. F. Harrison, D. H. Perkins and W. G. Scott, “Tri-bimaximal mixing and the neutrino oscillation data”, Phys.

Lett. B 530, 167 (2002); [arXiv:hep-ph/0202074 [hep-ph]].

K. Iwamoto (T2K collaboration), “Recent results from T2K and future prospects”, in “Proceedings of the ICHEP

”, Chicago, 2016 (2016).

C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); D. d. Wu, Phys. Rev. D 33, 860 (1986).

Downloads

Published

11-06-2024

How to Cite

[1]
Q. V. Phi, A. K. Nguyen, and T. M. Tran, “Dirac CP violation phase in the neutrino sector with A4 flavour symmetry”, Comm. Phys., vol. 34, no. 2, p. 125, Jun. 2024.

Issue

Section

Papers
Received 28-02-2024
Accepted 19-05-2024
Published 11-06-2024