Study on optical properties of hexagonal lattice photonic crystal fibers infiltrated with heavy water

Trong Dang Van, Bao Tran Le Tran, Lanh Chu Van
Author affiliations




Photonic crystal fiber, Confinement loss, Dispersion, The effective mode area, Supercontinuum generation


In this paper, we analyzed a PCF made from fused silica glass, with a core filled with heavy water. The guiding properties of proposed fibers in terms of effective refractive index, attenuation, and dispersion of the fundamental mode were studied and optimized setups were selected and analyzed in detail. After 25 simulations, we determined two structures possessing optimal dispersion with the lattice constant (Ʌ) and the filling factor as follows: Ʌ = 1.1 µm, d/Ʌ = 0.92 for #F1 and Ʌ = 1.4 µm, d/Ʌ = 0.92 for #F2. Besides, high nonlinearity and low confinement loss are also outstanding points in our model. Thanks to these advantages, the proposed fibers have been targeted for flat and smooth broadband supercontinuum (SC) generation for near-infrared applications.


Download data is not yet available.


Metrics Loading ...


J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., OL 21 (2020) 1547-1549. DOI:

T. A. Birks, J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett., OL 22 (1997) 961-963. DOI:

J. C. Knight, J. Arriaga, T. A.Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J.Russell, Anomalous dispersion in photonic crystal fiber, IEEE Photonics Technology Letters 12 (200) 807– 809. DOI:

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, Highly birefringent photonic crystal fibers, Opt. Lett., OL 25 (200), 1325 – 1327. DOI:

V. Finazzi, T. M. Monro, and D. J. Richardson, Small-core silica holey fibers: nonlinearity and confinement loss trade-offs, J. Opt. Soc. Am. B 20 (2003) 1427-1436. DOI:

W. J. Wadsworth, A. O. Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, Journal of the Optical Society of America B 19 (2002) 2148 – 2155. DOI:

S. Dupont, C. Petersen, J. Thøgersen, C.Agger, O. Bang, and S. R. Keiding, IR microscopy utilizing intense supercontinuum light source, Opt. Express 20 (2012) 4887– 4892. DOI:

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser, Opt. Express 17 (2009) 12627- 12640. DOI:

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett. 43 (2018) 999 – 1002. DOI:

B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang, and A. Zheltikov, High-power wavelength-tunable photonic-crystal-fiberbased oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing, Laser Phys. Lett. 6 (2009) 44–48. DOI:

T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency metrology, Nature 416 (2002) 233–237. DOI:

Buczynski R, Pysz D, Stepien R, Waddie A J, Kujawa I, Kasztelanic R, Franczyk M and Taghizadeh M R, Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass, Laser Physics Letters 8 (2011) 443–448. DOI:

J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25 (200) 25-27. DOI:

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B 19 (2002) 765-77. DOI:

K. D. Xuan, L. C. Van, Q. H. Dinh, L. V. Xuan, Ma. Trippenbach, R. Buczynski, Dispersion characteristics of a suspended-core optical fiber infiltrated with water, Applied Optics 56 (2017) 1012 -1019. DOI:

H.V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński and R. Kasztelanic, Application of ethanol infiltration for ultraflattened normal dispersion in fused silica photonic crystal fibers, Laser Physics 28 (2018) 115106. DOI:

Zhao P, Reichert M, Benis S, Hagan D J and van Stryland E W, Temporal and polarization dependence of the nonlinear optical response of solvents, Optica 5 (2018) 583–594. DOI:

Zhang R, Teipel J and Giessen H, Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, Opt. Express 14 (2006) 6800–6812. DOI:

R. Raei, M. Ebnali-Heidari, and H. Saghaei, Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions, J. Opt. Soc. Am. B 35 (2018) 323-30. DOI:

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. X. Dinh, M Trippenbach, R Buczynski, Supercontinuum generation in photonic crystal fibres with core filled with toluene, Journal of Optics 19 (2017) 125604. DOI:

L. C. Van and T. D. Van, Broadband supercontinuum generation with low peak power in controllable C7H8-core photonic crystal fibers of characteristic quantities, Indian Journal of Physics, 2023. DOI:

C.V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński and J. Pniewski, Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, Laser Phys. 29 (2019) 075107. DOI:

L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński and J. Pniewski, Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene, Laser Phys. 30 (2020) 035105. DOI:

T. D. Van, L. C. Van, Supercontinuum generation in C6H5NO2-core photonic crystal fibers with various air-hole size, Modern Physics Letters B 37 (2023) 2350063. DOI:

V. T. Dang and V. L. Chu, Design and optimization of C6H5NO2-core photonic crystal fibers of broadband supercontinuum generation with low peak power, Crystal Research and Technology, 58 (2023) 2300085. DOI:

D. Churin, T.N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2, Opt. Mat. Express 3 (2013) 1358–1364. DOI:

L.C. Van, B. T. L. Tran, T. D. Van, N. V. T. Minh, T. N. Thi, H. P. N. Thi, M. H. T. Nguyen, and V. T. Hoang, Supercontinuum generation in highly birefringent fiber infiltrated with carbon disulfide, Optical Fiber Technology, 75 (2023) 103151. DOI:

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region, Opt. Mat. Express 2 (2012) 1588 -1611. DOI:

Hosanna Odhner, D. T. Jacobs, Refractive Index of Liquid D2O for Visible Wavelengths, J. Chem. Eng. Data 57 (2102), 166-168. DOI:

A. S. L. Gomes, E. L. Falcão-Filho, C. B. de Araújo, D. Ratativa, and R. E. de Araújo, “Thermally managed eclipse Z-scan,” Opt. Express 15 (2007) 1712-1717. DOI:

C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223 (1998) 158-163. DOI:

P. Dhara and V. K. Singh, “Investigation of rectangular solid-core photonic crystal fiber as temperature sensor”, Microsystem Technologies, 27 (2021) 127–132. DOI:

A. M. Maili, I. Yakasai, P. E. Abas, M. M. Nauman, R. A. Apong et al., Design and simulation of photonic crystal fiber for liquid sensing, Photonics 8 (2021) 16. DOI:

H.V. Le, V.T. Hoang, H.T. Nguyen, V.C. Long, R. Buczynski, R. Kasztelanic, Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quant. Electron. 53 (2021), 187 DOI:

V.T. Hoang, R. Kasztelanic, A. Filipkowski, G. Ste˛pniewski, D. Pysz, M. Klimczak, S. Ertman, V.C. Long, T.R. Wolin´ski, M. Trippenbach, K.D. Xuan, M. S´mietana, R. Buczyn´ski, Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Opt. Mater. Exp. 9 (2019)., 2264 DOI:




How to Cite

T. Dang Van, B. T. Le Tran, and L. Chu Van, “Study on optical properties of hexagonal lattice photonic crystal fibers infiltrated with heavy water”, Comm. Phys., vol. 34, no. 2, p. 179, Jun. 2024.




Funding data

Received 03-02-2024
Accepted 29-05-2024
Published 07-06-2024

Most read articles by the same author(s)