Highly sensitive refractive index sensing based on nanostructured porous silicon interferometers

Nguyen Thuy Van, Pham Thanh Son, Pham Thanh Binh, Vu Duc Chinh, Hoang Thi Hong Cam, Do Thuy Chi, Nguyen Anh Tuan, Bui Huy, Pham Van Hoi
Author affiliations

Authors

  • Nguyen Thuy Van Institute of Materials Science, Vietnam Academy of Science and Technology https://orcid.org/0000-0002-5619-3142
  • Pham Thanh Son Institute of Materials Science, Vietnam Academy of Science and Technology https://orcid.org/0000-0002-3608-5929
  • Pham Thanh Binh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Vu Duc Chinh Institute of Materials Science, Vietnam Academy of Science and Technology
  • Hoang Thi Hong Cam University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology
  • Do Thuy Chi Thai Nguyen University of Education, Thai Nguyen University
  • Nguyen Anh Tuan Thai Nguyen University of Education, Thai Nguyen University
  • Bui Huy Institute of Materials Science, Vietnam Academy of Science and Technology
  • Pham Van Hoi Institute of Materials Science, Vietnam Academy of Science and Technology

DOI:

https://doi.org/10.15625/0868-3166/19163

Keywords:

porous silicon, Chemical sensor, Metal ions

Abstract

In this study, we present the experimental evidence demonstrating the utility of electrical double layer (EDL)-induced ion accumulation, using sodium (Na+) ion in water as model substances, on a negatively charged nanostructured surface, specifically thermally grown silicon dioxide (SiO2). This novel approach, termed Ion Surface Accumulation (ISA), aims to enhance the performance of nanostructured porous silicon (PSi) interferometers in optical refractometric applications. The experimental results show that the electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers enables remarkable amplification of the interferometer output signal (the spectral interferogram), even when the bulk refractive index variation is below 10-3 RIU. This substantial signal enhancement translates into an increase in sensitivity of up to two orders of magnitude, facilitating the reliable measurement of refractive index variations with both a detection limit (DL) and resolution (R) as low as 10-4 RIU. This achievement elevates the performance of PSi interferometers in photonics and plasmonics-based refractive index platforms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

N. H. Maniya and D. N. Srivastava, Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection, Mater. Sci. Semicond. Process., 115 (2020) 105126.

Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation, Sci. Rep., 10 (2020) 9736.

Z. A. Zaky, S. Alamri, V. D. Zhaketov, and A. H. Aly, Refractive index sensor with magnified resonant signal, Sci. Rep., 12 (2022) 13777.

V. H. Pham, H. Bui, T. Van Nguyen, T. A. Nguyen, T. S. Pham, V. D. Pham, T. C. Tran, T. T. Hoang, and Q. M. Ngo, Progress in the research and development of photonic structure devices, Adv. Nat. Sci. Nanosci. Nanotechnol., 7 (2016) 015003.

H. Bui, V. H. Pham, V. D. Pham, T. H. C. Hoang, T. B. Pham, T. C. Do, Q. M. Ngo, and T. Van Nguyen, Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method, Environ. Technol., 40 (2019) 3403.

V. H. Pham, T. Van Nguyen, T. A. Nguyen, V. D. Pham, and H. Bui, Nano porous silicon microcavity sensor for determination organic solvents and pesticide in water, Adv. Nat. Sci. Nanosci. Nanotechnol., 5 (2014) 045003.

F. A. Harraz, Porous silicon chemical sensors and biosensors: A review, Sensors Actuators B Chem., 202 (2014) 897.

W. D. Sacher, Y. Lin, H. Chen, S. S. Azadeh, Z. Yong, X. Luo, H. Chua, J. C. C. Mak, A. Govdeli, A. Sharma, J. C. Mikkelsen, X. Mu, A. Stalmashonak, G.-Q. Lo, and J. K. S. Poon, An Active Visible-Light Integrated Photonics Platform on 200-mm Si, in OFC, 2023, DOI: 10.1364/OFC.2023.Tu3C.5.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, Biosensing Using Porous Silicon Double-Layer Interferometers: Reflective Interferometric Fourier Transform Spectroscopy, J. Am. Chem. Soc., 127 (2005) 11636.

R. F. Balderas-Valadez, R. Schürmann, and C. Pacholski, One Spot—Two Sensors: Porous Silicon Interferometers in Combination With Gold Nanostructures Showing Localized Surface Plasmon Resonance, Frontiers in Chemistry, 7 (2019) 593.

M. P. Stewart, J. M. Buriak, Chemical and Biological Applications of Porous Silicon Technology, Adv. Mater., 12 (2000) 859.

C. Peng, C. Yang, H. Zhao, L. Liang, C. Zheng, C. Chen, L. Qin, H. Tang, Optical Waveguide Refractive Index Sensor for Biochemical Sensing, Appl. Sci. 13 (2023) 3829.

Z. Tu, D. Gao, M. Zhang, and D. Zhang, High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator, Opt. Express, 25 (2017) 20911.

M. J. Sailor, Chemistry of Porous Silicon, In Porous Silicon in Practice:Preparation, Characterization and Applications, Wiley‐VCH Verlag GmbH & Co. KGaA, (2011) 189.

S. Mariani, L. M. Strambini, and G. Barillaro, Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing, Anal. Chem., 88 (2016) 8502.

J. Chapron, S. A. Alekseev, V. Lysenko, V.N. Zaitsev, D. Barbier, Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters, Sensors Actuators B Chem., 120 (2007) 706.

W. Heller, Remarks on Refractive Index Mixture Rules, J. Phys. Chem. 69 (1965) 1123.

Downloads

Published

23-04-2024

How to Cite

[1]
N. Thuy Van, P. Thanh Son, P. Thanh Binh, V. Duc Chinh, H. Thi Hong Cam, D. Thuy Chi, N. Anh Tuan, B. Huy and P. Van Hoi, Highly sensitive refractive index sensing based on nanostructured porous silicon interferometers, Comm. Phys. 34 (2024) 19. DOI: https://doi.org/10.15625/0868-3166/19163.

Issue

Section

Papers
Received 12-10-2023
Accepted 28-12-2023
Published 23-04-2024