Development of a versatile lidar system based on passively Q-switched Nd: YAG laser for monitoring aerosols and cirrus clouds in the atmosphere

Hai Van Bui, Trung Van Dinh , Bao Thi Thanh Nguyen, Oanh Thi Kim Vu, Tu Xuan Nguyen, Tiep Viet Phung, Van Thi Khanh Nguyen, Bang Dong Pham, Tien Minh Pham, Thieu Van Nguyen, Thanh Van Hoang, Dien Tran Nguyen, Bao Anh Phung
Author affiliations

Authors

  • Hai Van Bui Van https://orcid.org/0000-0003-1442-4202
  • Trung Van Dinh Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
  • Bao Thi Thanh Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam https://orcid.org/0000-0001-6802-9481
  • Oanh Thi Kim Vu Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
  • Tu Xuan Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam https://orcid.org/0000-0002-8171-4966
  • Tiep Viet Phung Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
  • Van Thi Khanh Nguyen Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
  • Bang Dong Pham Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet,Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-7492-3284
  • Tien Minh Pham Department of Artificial Intelligence and Data Science, Thuyloi University - Southern Campus, An Thanh, Thuan An, Binh Duong, Vietnam
  • Thieu Van Nguyen Department of Science and Technology of Quang Binh, Dong Hoi, Vietnam
  • Thanh Van Hoang VNU University of Science
  • Dien Tran Nguyen Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Bao Anh Phung Institute of Human Geography, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-0518-6591

DOI:

https://doi.org/10.15625/0868-3166/18973

Keywords:

Passive Q-switch laser, Aerosol, Cirrus cloud, Optical depth, Lidar ratio

Abstract

Mobile lidar systems are important for sampling and monitoring over wide separated locations. In this paper, we present an in-house developed flexible and portable lidar system integrating an inexpensive passively Q-switched laser Nd:YAG and a detection module working in both analog and photon counting mode for studying the atmospheric boundary layer (BL) and cirrus clouds (CC). We developed a passively q-switched Nd:YAG pulsed laser operating at a wavelength of 532 nm with pulse energy up to 200 mJ and repetition rate of 1 Hz - 15 Hz. Our lidar system is designed to provide multi-angle lidar measurements up to 25 km. The multi-angle capability allows direct determination of the overlap function to characterize the lidar system by measuring the horizontal lidar signal. We use our lidar system to monitor the boundary layer and cirrus clouds over several locations Hanoi, Quangbinh, Danang, and Ho-Chi-Minh city. From the measurements, we derive the main properties such as the height, thickness, and optical depth of the earth’s surface aerosol layer and cirrus clouds. We demonstrate that this versatile compact and inexpensive lidar system is very useful for aerosol research and the study of high cirrus clouds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

W. Bach, Global air pollution and climatic change, Rev. Geophys. 14 (1976) 429.

S. Twomey, Aerosols, clouds and radiation, Atmos. Environ. A 25 (1991) 2435.

Y. J. Kaufman, D. Tanré and O. Boucher, A satellite view of aerosols in the climate system, Nature 419 (2002) 215.

I. Mattis, A. Ansmann, D. Müller, U. Wandinger and D. Althausen, Multiyear aerosol observations with dualwavelength raman lidar in the framework of earlinet, Journal of Geophysical Research: Atmospheres 109 (2004) D13203.

M. O. Andreae, C. D. Jones and P. M. Cox, Strong present-day aerosol cooling implies a hot future, Nature 435 (2005) 1187.

H. K.-F. Zhang Ren-Jian and S. Zhen-Xing, The role of aerosol in climate change, the environment, and human health, Atmospheric and Oceanic Science Letters 5 (2012) 156.

R. Measures, Laser Remote Sensing: Fundamentals and Applications. Krieger Publishing Company, 1992.

K. Fredriksson, B. Galle, K. Nyström and S. Svanberg, Mobile lidar system for environmental probing, Appl. Opt. 20 (1981) 4181.

T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara et al., Ground-based network observation of asian dust events of april 1998 in east asia, J. Geophys. Res. Atmos. 106 (2001) 18345.

A. Ansmann, J. Bösenberg, A. Chaikovsky, A. Comerón, S. Eckhardt, R. Eixmann et al., Long-range transport of saharan dust to northern europe: The 11–16 october 2001 outbreak observed with earlinet, J. Geophys. Res. Atmos. 108 (2003) 4783.

B. V. Hai, D. V. Trung, N. X. Tuan, D. D. Thang and N. T. Binh, Monitoring cirrus cloud and tropopause height over hanoi using a compact lidar system, Comm. Phys. 22 (2013) 357.

T. N. Xuan, H. B. Van and T. V. Dinh, Normally off-gated photomultiplier tube module in photon-counting mode for use in light detection and ranging measurements, J. Appl. Remote Sens. 8 (2014) 083536.

T. Pham Minh, T. Nguyen Xuan, T. Dinh Van, M. Le Duy and H. Bui Van, Depolarization property of cirrus clouds over hanoi, Comm. Phys. 27 (2017) 339.

H. V. Bui, M. D. Le, T. V. Dinh, T. X. Nguyen, T. M. Pham, H. N. Tran et al., Optical and geometrical properties of cirrus clouds from lidar measurements above Hanoi, Vietnam, J. Appl. Remote Sens. 13 (2019) 034523.

S. D. Mayor and S. M. Spuler, Raman-shifted eye-safe aerosol lidar, Appl. Opt. 43 (2004) 3915.

M. Radlach, A. Behrendt and V. Wulfmeyer, Scanning rotational raman lidar at 355 nm for the measurement of tropospheric temperature fields, Atmos. Chem. Phys. 8 (2008) 159.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer et al., Three-dimensional observations of atmospheric humidity with a scanning differential absorption Lidar, Proceedings Volume 7475, Remote Sensing of Clouds and the Atmosphere XIV 7475 (2009) 74750L.

A. Behrendt, S. Pal, V. Wulfmeyer, Álvaro M. Valdebenito B. and G. Lammel, A novel approach for the characterization of transport and optical properties of aerosol particles near sources – part i: Measurement of particle backscatter coefficient maps with a scanning uv lidar, Atmospheric Environment 45 (2011) 2795.

C.-W. Chiang, S. K. Das, H.-W. Chiang, J.-B. Nee, S.-H. Sun, S.-W. Chen et al., A new mobile and portable scanning lidar for profiling the lower troposphere, Geoscientific Instrumentation, Methods and Data Systems 4

(2015) 35.

C. Münkel and R. Roininen, Automatic monitoring of boundary layer structures with ceilometers, Vaisala News 184 (2010) 7.

G. Tsaknakis, A. Papayannis, P. Kokkalis, V. Amiridis, H. Kambezidis, R. Mamouri et al., Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over athens, greece, Atmos. Meas. Tech. 4 (2011) 1261.

L. Mei and M. Brydegaard, Atmospheric aerosol monitoring by an elastic scheimpflug lidar system, Opt. Express 23 (2015) A1613.

L. Mei, P. Guan and Z. Kong, Remote sensing of atmospheric no2 by employing the continuous-wave differential absorption lidar technique, Opt. Express 25 (2017) A953.

S. M. Pershin, A. L. Sobisevich, M. Y. Grishin, V. V. Gravirov, V. A. Zavozin, V. V. Kuzminov et al., Volcanic activity monitoring by unique lidar based on a diode laser, Laser Physics Letters 17 (2020) 115607.

W. Zhong, J. Liu, D. Hua, S. Guo, K. Yan and C. Zhang, White led light source radar system for multi-wavelength remote sensing measurement of atmospheric aerosols, Appl. Opt. 58 (2019) 8542.

S. A. Young, Analysis of lidar backscatter profiles in optically thin clouds, Appl. Opt. 34 (1995) 7019.

W.-N. Chen, C.-W. Chiang and J.-B. Nee, Lidar ratio and depolarization ratio for cirrus clouds, Appl. Opt. 41

(2002) 6470.

C.-W. Chiang, S. K. Das and J.-B. Nee, An iterative calculation to derive extinction-to-backscatter ratio based on lidar measurements, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 1187.

F. G. Fernald, Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23 (1984) 652.

J. D. Klett, Stable analytical inversion solution for processing lidar returns, Appl. Opt. 20 (1981) 211.

E. Giannakaki, D. S. Balis, V. Amiridis and S. Kazadzis, Optical and geometrical characteristics of cirrus clouds over a southern european lidar station, Atmos. Chem. Phys. 7 (2007) 5519.

S. G. Lakkis, M. Lavorato and P. O. Canziani, Monitoring cirrus clouds with lidar in the southern hemisphere: A local study over buenos aires. 1. tropopause heights, Atmos. Res. 92 (2009) 18.

B. V. Hai, N. X. Tuan, D. D. Thang, N. T. Binh and D. V. Trung, Monitoring the mixing layer over hanoi using a compact lidar system, Proc. The 2th Academic conference on natural science for Master and PhD students from Cambodia - Laos - Malaysia - Vietnam (2011) 389.

J. Wang, W. Liu, C. Liu, T. Zhang, J. Liu, Z. Chen et al., The determination of aerosol distribution by a no-blindzone scanning lidar, Remote Sens. 12 (2020) 626.

L. Mei, T. Ma, Z. Zhang, R. Fei, K. Liu, Z. Gong et al., Experimental calibration of the overlap factor for the pulsed atmospheric lidar by employing a collocated scheimpflug lidar, Remote Sensing 12 (2020) 1227.

Y. Sasano, H. Shimizu, N. Takeuchi and M. Okuda, Geometrical form factor in the laser radar equation: an experimental determination, Appl. Opt. 18 (1979) 3908.

A. C. Povey, R. G. Grainger, D. M. Peters, J. L. Agnew and D. Rees, Estimation of a lidar’s overlap function and its calibration by nonlinear regression, Appl. Opt. 51 (2012) 5130

Downloads

Published

05-02-2023

How to Cite

[1]
H. V. Bui, T. V. Dinh, B. T. T. Nguyen, O. T. K. Vu, T. X. Nguyen, T. V. Phung, V. T. K. Nguyen, B. D. Pham, T. M. Pham, T. V. Nguyen, T. V. Hoang, D. T. Nguyen and B. A. Phung, Development of a versatile lidar system based on passively Q-switched Nd: YAG laser for monitoring aerosols and cirrus clouds in the atmosphere, Comm. Phys. 34 (2023) 31. DOI: https://doi.org/10.15625/0868-3166/18973.

Issue

Section

Papers
Published 05-02-2023

Most read articles by the same author(s)