H\(_2\) adsorption isotherms of Mg-MOF-74 isoreticulars: An integrated approach utilizing a thermochemical model and density functional theory

Author affiliations

Authors

  • Nguyen Thuy Trang University of Science, Vietnam National University, Hanoi https://orcid.org/0000-0002-0628-6180
  • Cao Cong-Phuong Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University – Hanoi, Hanoi, Vietnam https://orcid.org/0000-0002-9756-1546
  • Phong Le-Hoang Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University – Hanoi, Hanoi, Vietnam https://orcid.org/0009-0002-3766-4436
  • Linh Nguyen-Hoang School of engineering physics, Hanoi University of Technology, Hanoi, Vietnam https://orcid.org/0000-0002-2483-3168
  • Nam Vu-Hoang Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh city, Ho Chi Minh City, Vietnam https://orcid.org/0000-0001-6319-4824
  • Toan Nguyen The Key Laboratory for Multiscale Simulation of Complex Systems, University of Science, Vietnam National University – Hanoi, Hanoi, Vietnam https://orcid.org/0000-0002-6331-2453
  • Thang Phan Bach Center for Innovative Materials and Architectures, Vietnam National University Ho Chi Minh city, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/18859

Keywords:

Hydrogen physisorption, Metal Organic Framework, Hydrogen adsorption isotherm

Abstract

A thermochemical model was developed to calculate the H2 adsorption isotherm of the
original Mg-MOF-74 framework, and its computationally designed isoreticular employing the adsorption energies and vibrational frequencies obtained from density functional theory calculations as input variables. The model reasonably replicates the experimental adsorption isotherm of the original framework at -196oC within the pressure range up to 1 bar. The strongest adsorption site of the new Mg-MOF-74 isoreticular exhibits saturation at lower pressure compared to the original one, despite a lower adsorption energy. This emphasizes the importance of vibrational, rotational, and translational contributions for comprehensively assessing the site’s adsorption performance. Because only the strongest adsorption site was taken into account for the site-site interaction, the model is only valid for low coverage rates of secondary sites. Consequently, it strongly overestimates the hydrogen uptake of the original isoreticular at higher temperature and pressure ranges where the cumulative coverage rate of the secondary adsorption sites is comparable to that of the strongest sites. In contrast, the model remains valid for the new isoreticular at a specific temperature between -40oC and 60oC within the pressure range up to 25 bar where the coverage rate of the secondary adsorption site is low. Its predictions highlights the significantly improved performance of the new framework compared to the original framework. Specially, it achieves a gravimetric hydrogen uptake value between 2.8 wt% and 1.9 wt% at a pressure of 25 bar within the mentioned temperature swing which is substantially higher than that of the original framework.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Claudia Weidenthaler and Michael Felderhoff, Solid-state hydrogen storage for mobile applications: Quo Vadis?, Energy Environ. Sci. 4, 2011, 2495. DOI: https://doi.org/10.1039/c0ee00771d

Rohit Y. Sathe, T.J. Dhilip Kumar, and Rajeev Ahuja, Furtherance of the material-based hydrogen storage based on theory and experiments, International Journal of Hydrogen Energyn 48 (34), 2023, 12767-12795. DOI: https://doi.org/10.1016/j.ijhydene.2022.11.306

https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

J. Liu, Y. Ma, J. Yang, L. Sun, D. Guo and P. Xiao, Recent advance of metal borohydrides for hydrogen storage, Front. Chem. 10, 2022, 945208. DOI: https://doi.org/10.3389/fchem.2022.945208

T. Umegaki, J.-M. Yan, X. -B. Zhang, H. Shioyama, N. Kuriyama, and Q. Xu, Boron- and nitrogen-based chemical hydrogen storage materials, Int. J. Hydrogen Energy 34 (5), 2009, 2303–2311. DOI: https://doi.org/10.1016/j.ijhydene.2009.01.002

H. Z. Liu, X. H. Wang, H. Zhou, S. C. Gao, H. W. Ge, and S. Q. Li, Improved hydrogen desorption properties of LiBH4 by AlH3 addition, Int. J. Hydrogen Energy 41 (47), 2016, 22118–22127. DOI: https://doi.org/10.1016/j.ijhydene.2016.09.177

H. Z. Liu, L. Xu, P. Sheng, S. Y. Liu, G. Y. Zhao, and B. Wang, Hydrogen desorption kinetics of the destabilized LiBH4-AlH3 composites, Int. J. Hydrogen Energy 42 (35), 2017, 22358–22365. DOI: https://doi.org/10.1016/j.ijhydene.2016.12.083

S. Orimo, Y. Nakamori, T. Matsushima, T. Ichikawa, D. Chen, and J. Gottwald, Nanostructured carbon-related materials for hydrogen storage, Columbus: International Symposium on Processing and Fabrication of Advanced Materials XI, 123–131.In, 2002.

J. J. Vajo, S. L. Skeith, and F. Mertens, Reversible storage of hydrogen in destabilized LiBH4, J. Phys. Chem. B 109 (9), 2005, 3719–3722. DOI: https://doi.org/10.1021/jp040769o

J. Weitkamp, M. Fritz, and S. Ernst, Zeolites as media for hydrogen storage, Int. J. Hydrogen Energy 20 (12), 1995, 967-970. DOI: https://doi.org/10.1016/0360-3199(95)00058-L

T. Zhao, X. Ji, W. Jin, W. Yang, and T. Li, Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge, Fullerenes, Nanotub Carbon Nanostruct 25, 2017, 355e8. DOI: https://doi.org/10.1080/1536383X.2017.1305358

D. Silambarasan, V. Surya, K. Iyakutti, K. Asokan, V. Vasu, and Y. Kawazoe, Gamma(g)-Ray irradiated multi-walled carbon nanotubes (MWCNTs) for hydrogen storage, Appl. Surf. Sci. 418, 2017, 49e55. DOI: https://doi.org/10.1016/j.apsusc.2017.02.262

V. Tozzini and V. Pellegrini, Prospects for hydrogen storage in graphene, Phys. Chem. Chem. Phys. 15, 2013, 80e9. DOI: https://doi.org/10.1039/C2CP42538F

L. F. Wan, E. S. Cho, T. Marangoni, P. Shea, S. Kang, and C. Rogers, Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials, Chem. Mater. 31, 2019, 2960e70. DOI: https://doi.org/10.1021/acs.chemmater.9b00494

M. Gaboardi, N. S. Amade, M. Aramini, C. Milanese, G. Magnani, and S. Sanna, Extending the hydrogen storage limit in fullerene, Carbon 120, 2017, 77e82. DOI: https://doi.org/10.1016/j.carbon.2017.05.025

M. Shi, L. Bi, X. Huang, Z. Meng, Y. Wang, Z. Yang, Design of three-dimensional nanotube-fullerene-interconnected framework for hydrogen storage, Appl. Surf. Sci. 534, 2020, 147606. DOI: https://doi.org/10.1016/j.apsusc.2020.147606

S. Ghosh and J. K. Singh, Hydrogen adsorption in pyridine bridged porphyrin-covalent organic framework, Int. J. Hydrogen Energy 44, 2019, 1782e96. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.066

A. Deshmukh, T. N. M. Le, C.-C. Chiu, and J.-L. Kuo, DFT Study on the H2 Storage Properties of Sc-Decorated Covalent Organic Frameworks Based on Adamantane Units, J. Phys. Chem. C 122(29), 2018, 16853–16865. DOI: https://doi.org/10.1021/acs.jpcc.8b06122

L. Xia and Q. Liu, Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature, J. Solid State Chem. 244, 2016, 1e5. DOI: https://doi.org/10.1016/j.jssc.2016.09.007

H. Zhao, Y. Guan, H. Guo, R. Du, and C. Yan, Hydrogen storage capacity on Li-decorated covalent organic framework-1: a first-principles study, Mater. Res. Express 7, 2020, 035506. DOI: https://doi.org/10.1088/2053-1591/ab7fe0

S. P. She, S. S. Priya, K. Sudhakar, and M. Tahir, A review on current trends in potential use of metal-organic framework for hydrogen storage, Int. J. Hydrogen Energy 46, 2021, 11782e803. DOI: https://doi.org/10.1016/j.ijhydene.2021.01.020

A. Chibani, G. Mecheri, A. Dehane, S. Merouani, and I. Ferhoune, Performance improvement of adsorptive hydrogen storage on activated carbon: Effects of phase change material and inconstant mass flow rate, Journal of Energy Storage 56(B), 2022, 105930. DOI: https://doi.org/10.1016/j.est.2022.105930

Z. Xuan, Z. Qingrong, Z. Guobin, Z. Weidong, Adsorption equilibrium and charge/discharge characteristics of hydrogen on MOFs, Cryogenics 112, 2020, 103121. DOI: https://doi.org/10.1016/j.cryogenics.2020.103121

C. M. Quine, H. L. Smith, C. C. Ahn, A. H-. Zamudio, D. A. Boyd, and B. Fultz, Hydrogen Adsorption and Isotope Mixing on Copper-Functionalized Activated Carbons, J. Phys. Chem. C 126 (29), 2022, 16579 - 16586. DOI: https://doi.org/10.1021/acs.jpcc.2c02960

D. Zhao, X. Wang, L. Yue, Y. He and B. Chen, Porous metal–organic frameworks for hydrogen storage, Chem. Commun. 58, 2022, 11059-11078. DOI: https://doi.org/10.1039/D2CC04036K

M. T. Kapelewski, T. Runcěvski, J. D.Tarver, H. Z. H. Jiang, K. E. Hurst, P. A. Parilla, A. Ayala, T. Gennett, S. A. F. Gerald, C. M. Brown, and J. R. Long, Record High Hydrogen Storage Capacity in the Metal−Organic Framework Ni2(m‐dobdc) at Near-Ambient Temperatures, Chem. Mater. 30 (22), 2018, 8179–8189. DOI: https://doi.org/10.1021/acs.chemmater.8b03276

M. Witman, S. Ling, A. Gladysiak, K. C. Stylianou, B. Smit, B. Slater, and M. Haranczyk, Rational Design of a Low-Cost, High-Performance Metal−Organic Framework for Hydrogen Storage and Carbon Capture, J. Phys. Chem. C 121, 2017, 1171−1181. DOI: https://doi.org/10.1021/acs.jpcc.6b10363

T. Pham, K. A. Forrest, R. Banerjee, G. Orcajo, J. Eckert, and B. Space, Understanding the H2 Sorption Trends in the M‐MOF-74 Series (M = Mg, Ni, Co, Zn), J. Phys. Chem. C 119, 2015, 1078−1090. DOI: https://doi.org/10.1021/jp510253m

R. Mercado, B. Vlaisavljevich, L.-C. Lin, K. Lee, Y. Lee, J. A. Mason, D. J. Xiao, M. I. Gonzalez, M. T. Kapelewski, J. B. Neaton, and B. Smit, Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal−Organic Frameworks, J. Phys. Chem. C 120, 2016, 12590−12604. DOI: https://doi.org/10.1021/acs.jpcc.6b03393

T. N-. Thuy, P. L-. Hoang, N. H. Vu, T. N.-M. Le, T. L. H. Doan, J.-L Kuo, T. T. Nguyen, T. B. Phan, and D. N-. Manh, Hydrogen adsorption mechanism of MOF-74 metal–organic frameworks: an insight from first principles calculations, RSC Adv. 10, 2020, 43940-43949. DOI: https://doi.org/10.1039/D0RA08864A

Irving Langmuir, The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum, Journal of the American Chemical Society 40 (9), 1998, 1361–1402. DOI: https://doi.org/10.1021/ja02242a004

Donald A. McQuarrie and John D. Simon, Molecular thermodynamics, University Science Books, 55D Gate Five Road, Sausalito CA 94965, USA, 1999.

T. T. Nguyen, T. N.-M Le, T. T. Nguyen, T. B. Phan, and D. N-. Manh, H2 physisorption in fluorinated MOF-74: The role of fluorine from the perspective of electronic structure calculations, International Journal of Hydrogen Energy 48 (24), 2023, 8997-9007. DOI: https://doi.org/10.1016/j.ijhydene.2022.11.222

P. D. C. Dietzel, P. A. Georgiev, J. Eckert, R. Blom, T. Stras̈sle, T. Unruh, Interaction of Hydrogen With Accessible Metal Sites in the Metal-Organic Frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg), Chem. Commun. 46, 2010, 4962−4964. DOI: https://doi.org/10.1039/c0cc00091d

Downloads

Published

21-12-2023

How to Cite

[1]
T.-T. Nguyen, “H\(_2\) adsorption isotherms of Mg-MOF-74 isoreticulars: An integrated approach utilizing a thermochemical model and density functional theory”, Comm. Phys., vol. 33, no. 4, p. 421, Dec. 2023.

Issue

Section

Papers
Received 12-09-2023
Accepted 05-10-2023
Published 21-12-2023