Effect of synthesis parameters on cobalt oxide nanostructures morphology
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/18278Abstract
A facile approach was employed for the synthesis of cobalt oxide nanorods (NRs) using cobalt nitrate, sodium oxalate and ethylene glycol as precursors via a hydrothermal process. The hydrothermal conditions, such as temperature and time, were varied to optimize the morphological characteristics of the NRs. After undergoing filtration, washing, and drying, the resulting material was characterized using several techniques, including field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Our findings reveal that the NRs exhibit diverse morphologies, depending on the hydrothermal conditions, with the smallest aspect ratio observed when prepared at 200 °C for 24 hours. In addition, we investigated the gas sensing capabilities of the NRs to ammonia under these conditions.
Downloads
Metrics
References
A. Gulino, P. Dapporto, P. Rossi, I. Fragalà, A Novel Self-generating Liquid MOCVD Precursor for Co3O4 Thin Films, Chem. Mater. 15 (2003) 3748–3752. doi:10.1021/cm034305z. DOI: https://doi.org/10.1021/cm034305z
W. Guo, X. Lian, Y. Tian, T. Yang, S. Wang, Facile fabrication 1D/2D/3D Co3O4 nanostructure in hydrothermal synthesis for enhanced supercapacitor performance, J. Energy Storage. 38 (2021) 102586. doi:10.1016/j.est.2021.102586. DOI: https://doi.org/10.1016/j.est.2021.102586
F. Zhan, B. Geng, Y. Guo, Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries, Chem. - A Eur. J. 15 (2009) 6169–6174. doi:10.1002/chem.200802561. DOI: https://doi.org/10.1002/chem.200802561
Y. Ren, X. Xiao, J. Ni, H. Zhao, H. Yang, X. Chen, RuO2 incorporated Co3O4 nanosheets as carbon-free integrated cathodes for lithium-oxygen battery application, Mater. Lett. 304 (2021) 130634. doi:10.1016/j.matlet.2021.130634. DOI: https://doi.org/10.1016/j.matlet.2021.130634
H. Nguyen, S.A. El-Safty, Meso- and Macroporous Co3O4 Nanorods for Effective VOC Gas Sensors, J. Phys. Chem. C. 115 (2011) 8466–8474. doi:10.1021/jp1116189. DOI: https://doi.org/10.1021/jp1116189
P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N. Van Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance, Sensors Actuators, B Chem. 270 (2018) 158–166. doi:10.1016/j.snb.2018.05.026. DOI: https://doi.org/10.1016/j.snb.2018.05.026
K.J. Kormondy, A.B. Posadas, A. Slepko, A. Dhamdhere, D.J. Smith, K.N. Mitchell, T.I. Willett-Gies, S. Zollner, L.G. Marshall, J. Zhou, A.A. Demkov, Epitaxy of polar semiconductor Co3O4 (110): Growth, structure, and characterization, J. Appl. Phys. 115 (2014). doi:10.1063/1.4885048. DOI: https://doi.org/10.1063/1.4885048
P.G. Choi, T. Fuchigami, K.I. Kakimoto, Y. Masuda, Effect of Crystal Defect on Gas Sensing Properties of Co3O4 Nanoparticles, ACS Sensors. 5 (2020) 1665–1673. doi:10.1021/acssensors.0c00290. DOI: https://doi.org/10.1021/acssensors.0c00290
A. Ma, S.Y. Baek, J.H. Seo, S.A. Abbas, J.-H. Kwon, S.J. Ahn, K.M. Nam, Photodeposition of Pt Nanoparticles on Co3O4 Nanocubes for Detection of Acetone at Part-Per-Billion Levels, ACS Appl. Nano Mater. 4 (2021) 2752–2759. doi:10.1021/acsanm.0c03393. DOI: https://doi.org/10.1021/acsanm.0c03393
H. Bazrafshan, R. Shajareh Touba, Z. Alipour Tesieh, S. Dabirnia, B. Nasernejad, Hydrothermal synthesis of Co3O4 nanosheets and its application in photoelectrochemical water splitting, Chem. Eng. Commun. 204 (2017) 1105–1112. doi:10.1080/00986445.2017.1344651. DOI: https://doi.org/10.1080/00986445.2017.1344651
J. Cao, S. Wang, X. Zhao, Y. Xing, J. Li, D. Li, Facile synthesis and enhanced toluene gas sensing performances of Co3O4 hollow nanosheets, Mater. Lett. 263 (2020) 127215. doi:10.1016/j.matlet.2019.127215. DOI: https://doi.org/10.1016/j.matlet.2019.127215
Z. Fei, S. He, L. Li, W. Ji, C.-T. Au, Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion, Chem. Commun. 48 (2012) 853–855. doi:10.1039/C1CC15976C. DOI: https://doi.org/10.1039/C1CC15976C
Y. Sun, P. Lv, J.Y. Yang, L. He, J.C. Nie, X. Liu, Y. Li, Ultrathin Co3O4 nanowires with high catalytic oxidation of CO, Chem. Commun. 47 (2011) 11279–11281. doi:10.1039/c1cc14484g. DOI: https://doi.org/10.1039/c1cc14484g
L. Xiong, Y. Teng, Y. Wu, J. Wang, Z. He, Large-scale synthesis of aligned Co3O4 nanowalls on nickel foam and their electrochemical performance for Li-ion batteries, Ceram. Int. 40 (2014) 15561–15568. doi:10.1016/j.ceramint.2014.07.032. DOI: https://doi.org/10.1016/j.ceramint.2014.07.032
Y. Zhang, Y. Wu, Z. Duan, B. Liu, Q. Zhao, Z. Yuan, S. Li, J. Liang, Y. Jiang, H. Tai, High performance humidity sensor based on 3D mesoporous Co3O4 hollow polyhedron for multifunctional applications, Appl. Surf. Sci. 585 (2022) 152698. doi:10.1016/j.apsusc.2022.152698. DOI: https://doi.org/10.1016/j.apsusc.2022.152698
J. Cao, S. Wang, J. Li, Y. Xing, X. Zhao, D. Li, Porous nanosheets assembled Co3O4 hierarchical architectures for enhanced BTX (Benzene, Toluene and Xylene) gas detection, Sensors Actuators, B Chem. 315 (2020) 128120. doi:10.1016/j.snb.2020.128120. DOI: https://doi.org/10.1016/j.snb.2020.128120
Z. Zhang, Y. Song, J. Sun, Self-stacked Co(OH)2/Co3O4 nanosheets for high-selectivity gas sensor to n-butyl alcohol, Appl. Surf. Sci. 610 (2023) 155438. doi:10.1016/j.apsusc.2022.155438. DOI: https://doi.org/10.1016/j.apsusc.2022.155438
J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas, Sensors Actuators, B Chem. 209 (2015) 449–455. doi:10.1016/j.snb.2014.11.141. DOI: https://doi.org/10.1016/j.snb.2014.11.141
Y. Qiu, Y. Wang, Controllable synthesis of porous Co3O4 nanorods and their ethanol-sensing performance, Ceram. Int. (2022). doi:10.1016/j.ceramint.2022.06.221. DOI: https://doi.org/10.1016/j.ceramint.2022.06.221
P.H. Phuoc, L.T. Hong, N.T. Thang, N.H. Hanh, C.M. Hung, N. Van Duy, N. Van Hieu, N.D. Hoa, Fabrication of p-Type Co3O4 Nanofiber Sensors for Ultra-Low H2S Gas Detection at Low Temperature, J. Nanosci. Nanotechnol. 21 (2021) 2626–2632. doi:10.1166/jnn.2021.19111. DOI: https://doi.org/10.1166/jnn.2021.19111
R. Hippler, M. Cada, P. Ksirova, J. Olejnicek, P. Jiricek, J. Houdkova, H. Wulff, A. Kruth, C.A. Helm, Z. Hubicka, Deposition of cobalt oxide films by reactive pulsed magnetron sputtering, Surf. Coatings Technol. 405 (2021) 126590. doi:10.1016/j.surfcoat.2020.126590. DOI: https://doi.org/10.1016/j.surfcoat.2020.126590
H.Y. Kwong, Y.W. Wong, Formation of cobalt hydroxide single-crystal platelets from pulsed laser deposited cobalt thin film, J. Alloys Compd. 497 (2010) 267–271. doi:10.1016/j.jallcom.2010.03.024. DOI: https://doi.org/10.1016/j.jallcom.2010.03.024
N.M. Le, H.L. Nguyen, T.T. Le Dang, T. Matteo, V.D.N. Tran, H.M. Luu, T.H.D. Truong, D.H. Nguyen, Synthesis of cobalt oxide nanorods using hydrothermal method, 5th Int. Conf. Adv. Mater. Nanotechnology, Nov 16-19. Hanoi (2022) 207–210.
L. Van Duy, T.T. Nguyet, D.T.T. Le, N. Van Duy, H. Nguyen, F. Biasioli, M. Tonezzer, C. Di Natale, N.D. Hoa, Room Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring, Nanomaterials. 13 (2022) 146. doi:10.3390/nano13010146. DOI: https://doi.org/10.3390/nano13010146
P.H. Phuoc, N.N. Viet, N.V. Chien, N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, H.S. Hong, D.D. Trung, N. Van Hieu, Comparative study of CuO/Co3O4 external and CuO-Co3O4 internal heterojunctions: Do these factors always enhance gas-sensing performance?, Sensors Actuators B Chem. 384 (2023) 133620. doi:10.1016/j.snb.2023.133620. DOI: https://doi.org/10.1016/j.snb.2023.133620
G. Lei, C. Lou, Z. Li, J. Xie, G. Lu, H. Pan, H. Mei, X. Liu, J. Zhang, Heterogeneous Co3O4/Ag2O nanorods for conductometric triethylamine sensing at 90 °C, Sensors Actuators B Chem. 351 (2022) 131005. doi:10.1016/j.snb.2021.131005. DOI: https://doi.org/10.1016/j.snb.2021.131005
X. Qiao, C. Ma, X. Chang, X. Li, K. Li, L. Zhu, F. Xia, Q. Xue, 3D radial Co3O4 nanorod cluster derived from cobalt-based layered hydroxide metal salt for enhanced trace acetone detection, Sensors Actuators, B Chem. 327 (2021) 128926. doi:10.1016/j.snb.2020.128926. DOI: https://doi.org/10.1016/j.snb.2020.128926
H.M. Jeong, H.J. Kim, P. Rai, J.W. Yoon, J.H. Lee, Cr-doped Co3O4 nanorods as chemiresistor for ultraselective monitoring of methyl benzene, Sensors Actuators, B Chem. 201 (2014) 482–489. doi:10.1016/j.snb.2014.05.038. DOI: https://doi.org/10.1016/j.snb.2014.05.038
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 06-06-2023
Published 11-08-2023