Silver nanoparticles synthesized from Spilanthes acmella L. Murr extract using antifungal and antibacterial

Cao Tien Khoa, Dinh Thuy Van, Dang Thi Huong, Phan Dinh Quang, Do Thi Hue
Author affiliations


  • Cao Tien Khoa Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung ward, Thai Nguyen city, Vietnam
  • Dinh Thuy Van Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung ward, Thai Nguyen city, Vietnam
  • Dang Thi Huong Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung ward, Thai Nguyen city, Vietnam
  • Phan Dinh Quang Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung ward, Thai Nguyen city, Vietnam
  • Do Thi Hue Thai Nguyen University of Education, No. 20, Luong Ngoc Quyen Street, Quang Trung ward, Thai Nguyen city, Vietnam



silver nanoparticles, Spilanthes acmella L. Murr, biosynthesis, antibacterial, antifungal


Spilanthes acmella L. Murr is a medicinal herb with many valuable biological activities such as clearing heat, detoxifying, dissipating phlegm, antiseptic, pain relief, antifungal, anti-inflammatory... In this work, we used Spilanthes acmella L. Murr extract to synthesize silver nanoparticles to combine and enhance the activity of silver and Spilanthes acmella L. Murr extract in antibacterial and antifungal activities. The reaction parameters were investigated to find the most optimal conditions for synthesizing silver nanoparticles, such as AgNO3 volume, solution pH, and reaction temperature. UV-VIS absorption spectra were used to analyze the influence of the reaction parameters. The functional groups on the silver nanoparticles as well as the Spilanthes acmella L. Murr extract were found by infrared absorption (FTIR) spectroscopy. The crystal structure of the synthesized silver nanoparticles was determined by X-ray diffraction (XRD) spectroscopy. On the basis of the synthesized silver nanoparticles, the antifungal activity was investigated on the strains: A. flavus (Af), A. brasiliensis (Ab), C. Albicans (Ca), and antibacterial: Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA) was performed to compare the activity of the antibiotic ampicillin 100 mg/mL.


Download data is not yet available.


V. S. Dandin, P. M. Naik, H. N. Murthy, S. Y. Park, E. J. Lee, & K. Y. Paek, Rapid regeneration and analysis of genetic fidelity and scopoletin contents of micropropagated plants of Spilanthes oleracea L, J. Hortic. Sci. Biotechnol. 89 (2014) 79 DOI:

N. Chaachouay, A. Douira and L. Zidane, Herbal medicine used in the treatment of human diseases in the Rif, Northern Morocco, Arab J. Sci. Eng. 47 (2022) 131 DOI:

E. Spinozzi, M. Ferrati, C. Baldassarri, L. Cappellacci, M. Marmugi, A.Caselli, G. Benelli, F. Maggi, A. Petrelli, A review of the chemistry and biological activities of Acmella oleracea (“jambù”, Asteraceae), with a view to the development of bioinsecticides and acaricides, Plants 11 (2022) 2721. DOI:

R. Abdul Rahim, P.A. Jayusman, N. Muhammad, N. Mohamed, V. Lim, N. H. Ahmad, S. Mohamad, Z. A. Abdul Hamid, F. Ahmad, N. Mokhtar, A. N. Shuid, I. N. Mohamed. Potential Antioxidant and Anti-Inflammatory Effects of Spilanthes acmella and Its Health Beneficial Effects: A Review. Int. J. Environ. Res. Public Health. 18 (2021) 3532. DOI:

V. Prachayasittikul, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul. High therapeutic potential of Spilanthes acmella: A review. EXCLI J. 12 (2013) 291. PMID: 27092032; PMCID: PMC4827075.

S. Dubey, S. Maity, M. Singh, S.A Saraf, & S. Saha, Phytochemistry, Pharmacology and Toxicology ofSpilanthes acmella: A Review, Adv. Pharmacol. Sci. 2013 (2013) 423750 . DOI:

W. Leonardo da Silva, D. Moro Druzian, L. Rodrigues Oviedo, P. Cristine Ladwig Muraro, & Rodrigues V. Oviedo, L. AgNPs for Photocatalysis and Biomedical Applications. Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. 2021 DOI:

S. Moharana, A. Subhrasmita Gadtya, R. Nayak, & R. Naresh Mahaling, Synthesis, Dielectric and Electrical Properties of Silver-Polymer Nanocomposites. Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. 2021. DOI:

A. Michałowska and A. Kudelski, The first silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy with magnetic properties, Molecules 27 (2022) 3081. DOI:

B. Lv, Y. Liu and W. Wu, Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure, Nat. Commun. 13 (2022) 1835. DOI:

C. Luna, E.D. Barriga-Castro, A. Gómez-Treviño, N.O Núñez and R. Mendoza-Reséndez, Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds, Int. J. Nanomed. 11 (2016) 4787. DOI:

J. Singh, & R. K. Soni, Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity, Colloids Surf. A Physicochem. Eng. Asp. 626 (2021) 127005. DOI:

R. A. Abo-Elmagd, R. A. Hamouda, & M.H. Hussein, Phycotoxicity and catalytic reduction activity of green synthesized Oscillatoria gelatin-capped L.AgNPs, Sci. Rep. 12 (2022) 20378. DOI:

N. Khandannasab, Z. Sabouri, S. Ghazal, & M. Darroudi, Green-based synthesis of mixed-phase L.AgNPs as an effective photocatalyst and investigation of their antibacterial properties. Journal of Molecular Structure. (2019) 127411. DOI:

P. P. Austin Suthanthiraraj, & A. K. Sen, Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen, Biosens. Bioelectron. 132 (2019) 38. DOI:

P. Prasher, M. Sharma, H. Mudila, G. Gupta, A. K. Sharma, D. Kumar, K. Dua, Emerging trends in clinical implications of bio-conjugated L.AgNPs in drug delivery, Colloid Interface Sci. Commun. 35 (2020) 100244. DOI:

X. Yan, Y. Zhou, W. Liu, S. Liu, X. Hu, W. Zhao, D. Yuan, Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices, Liq. Cryst. 47 (2020) 1131. DOI:

M. Hasanin, M. A. Elbahnasawy, A. M. Shehabeldine, Ecofriendly preparation of Silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. Biometals 34 (2021) 1313 DOI:

A. Naganthran, G. Verasoundarapandian, F. E. Khalid, M. J. Masarudin, A. Zulkharnain, N.M. Nawawi, M. Karim, C. A. Che Abdullah, S. A. Ahmad, Synthesis, characterization and biomedical application of L.AgNPs, Materials 15 (2022) 427. DOI:

M. A. Sayed, T. M. A. A El-Rahman and H.K. Abdelsalam, Attractive study of the antimicrobial, antiviral, and cytotoxic activity of novel synthesized silver chromite nanocomposites, BMC Chem. 16 (2022) 39. DOI:

M. Gakiya-Teruya, L. Palomino-Marcelo and J. C. F. Rodriguez-Reyes, Synthesis of Highly Concentrated Suspensions of Silver nanoparticles by Two Versions of the Chemical Reduction Method. Methods Protoc. 2 (2019) 3. DOI:

A. Ścigała, R. Szczęsny and P. Kamedulski, Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction, J. Nanopart. Res. 25 (2023) 23. DOI:

C. Gangwar, B. Yaseen, I. Kumar, N. K. Singh and R. M. Naik, Growth kinetic study of tannic acid mediated monodispersed L.AgNPs synthesized by chemical reduction method and its characterization, ACS Omega 6 (2021) 22344. DOI:

K. Nešović and V. Mišković‐Stanković, A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized Silver nanoparticles for wound dressing applications, Polym. Eng. Sci. 60 (2020) 1393. DOI:

S. M. Yang, H. K. Yen, K.C Lu, Synthesis and Characterization of Indium Tin Oxide Nanowires with surface modification of L.AgNPs by electrochemical method, Nanomater. 12 (2022) 897. DOI:

N. Jara, N.S Milán, A. Rahman, L. Mouheb, D. C. Boffito, C. Jeffryes, S.A. Dahoumane, Photochemical Synthesis of Gold and Silver nanoparticles—A Review, Molecules 26 (2021) 4585. DOI:

A. A.Yaqoob, K. Umar, & M. N.M. Ibrahim, Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review, Appl. Nanosci. 10 (2020) 1369. DOI:

M. Bekhit, M. N. Abu el -naga, R. Sokary, R. A. Fahim, N. M. El-Sawy, Radiation-induced synthesis of tween 80 stabilized Silver nanoparticles for antibacterial applications. J. Environ. Sci. Health A 55 (2020) 1210. DOI:

L. Freitas de Freitas, G. H. C. Varca, J.G. Dos Santos Batista, A. Benévolo Lugão, An overview of the synthesis of gold nanoparticles using radiation technologies, Nanomater. 8 (2018) 939. DOI:

E. Sreelekha, B. George, A. Shyam, A Comparative Study on the Synthesis, Characterization, and Antioxidant Activity of Green and Chemically Synthesized Silver nanoparticles. BioNanoSci. 11 (2021) 489. DOI:

R. Kotcherlakota, S. Das and C. R. Patra, Therapeutic applications of green-synthesized silver nanoparticles, Green synthesis, characterization and applications of nanoparticles, (2019) pp. 389-428. DOI:

W. Zhang, & W. Jiang, Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method, Int. J. Biol. Macromol. 155 (2020) 1252. DOI:

M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, Z. K. Shinwari, Green synthesis of Silver nanoparticles via plant extracts: beginning a new era in cancer theranostics, Nanomedicine 11(2016) 3157. DOI:

K. Govindaraju, K. Krishnamoorthy, S. A. Alsagaby, G. Singaravelu, & M. Premanathan, Green synthesis of Silver nanoparticles for selective toxicity towards cancer cells, IET Nanobiotechnol. 9 (2015) 325. DOI:

A. H. Azam and Y. Tanji, Peculiarities of staphylococcus aureus phages and their possible application in phage therapy, Appl. Microbiol. Biotechnol. 103 (2019) 4279. DOI:

T. Evans, Diagnosis and management of sepsis, Clin Med (Lond). 18 (2018) 146 DOI:

L. H. Liu, N. Y. Wang, A. Y. J. Wu, C. C. Lin, C. M. Lee, C. P. & Liu, Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes, J. Microbiol. Immunol. Infect. 51 (2018) 565. DOI:

K. Ranoszek-Soliwoda, E. Tomaszewska, K. Małek, G. Celichowski, P. Orlowski, M. Krzyzowska et al., The synthesis of monodisperse Silver nanoparticles with plant extracts, Colloids Surf. B: Biointerfaces 177 (2019) 19. DOI:

S. S. Dakshayani, M. B. Marulasiddeshwara, M. N. S. Kumar, G. Ramesh, P. R. Kumar, S. Devaraja et al., Antimicrobial, anticoagulant and antiplatelet activities of green synthesized L.AgNPs using Selaginella (Sanjeevini) plant extract, Int. J. Biol. Macromol. 135 (2019) 787. DOI:

S. Ahmed, M. Saifullah, M. Ahmad, B. L. Swami and S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, J. Radiat. Res. Appl. Sci. 9 (2016) 1. DOI:

J. Lin, Z. Yang, X. Zhao, H. Ji, C. Peng, B. Sui et al., Kinetics and mechanistic insights into the hydrothermal synthesis of alumina microrods, Chem. Eng. Sci. 244 (2021) 116817. DOI:




How to Cite

K. Cao Tien, V. Dinh Thuy, H. Dang Thi, Q. Phan Dinh and H. Do Thi, Silver nanoparticles synthesized from <i>Spilanthes acmella L. Murr</i> extract using antifungal and antibacterial, Comm. Phys. 33 (2023) 297. DOI: