Characterization of structure and Li-ionic conductivity of La\(_{(2/3)−x}\)Li\(_{3x}\)TiO\(_{3}\) ceramics prepared by spark plasma sintering
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17946Keywords:
High energy mechanical milling, LLTO ceramics, Spark plasma sintering, Lithium ionic conductivityAbstract
In this work, La(2/3)-xLi3xTiO3 (LLTO) dense ceramic samples have been prepared by high-energy ball milling and spark plasma sintering (SPS) route. The crystal structures and microstructures of the samples were characterized by X-ray powder diffraction and FE-SEM, whereas their Li-ionic conductivity properties investigated by AC impedance spectroscopy. At 21 oC, the LLTO ceramic samples possessed the grain conductivity and grain boundary/total conductivity of σg = 8.3×10-4 S cm-1 and σgb = 2.3×10-5 S cm-1, respectively. In the investigated temperature range from 21 oC to 120 oC, the ion conduction is governed by thermally activated mechanism. The activation energies for grain and grain boundary conductivities are Eag = 0.26 eV and Eagb = 0.43 eV, respectively.
Downloads
Metrics
References
J. Janek and W. G. Zeier, A solid future for battery development, Nature Energy 1 (2016) 1. DOI: https://doi.org/10.1038/nenergy.2016.141
M.-M.Thackeray, C. Wolverton and E.-D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5 (2012) 7854. DOI: https://doi.org/10.1039/c2ee21892e
R. Kali and A. Mukhopadhyay, Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: overview and perspective, J. Power Sources 247 (2014) 920. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.010
A. Mauger, M. Armand, C. M. Julien and K. Zaghib, Challenges and issues facing lithium metal for solid-state rechargeable batteries, J. Power Sources 353 (2017) 333. DOI: https://doi.org/10.1016/j.jpowsour.2017.04.018
G. Yang et al., Advances in materials design for all-solid-state batteries: from bulk to thin films, Appl. Sci. 10 (2020) 4727. DOI: https://doi.org/10.3390/app10144727
J. Ibarra et al., Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03 ≤ x ≤ 0.167), Solid State Ionics 134 (2000) 219. DOI: https://doi.org/10.1016/S0167-2738(00)00761-X
H. Geng, J. Lan, A. Mei, Y. Lin and C. W. Nan, Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents, Electrochim. Acta 56 (2011) 3406. DOI: https://doi.org/10.1016/j.electacta.2010.06.031
Y. Inaguma, T. Katsumata, M. Itoh, Y. Morii and T. Tsurui, Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites, Solid State Ionics 177 (2006) 3037. DOI: https://doi.org/10.1016/j.ssi.2006.08.012
K. Y. Yang, J. W. Wang and K. Z. Fung, Roles of lithium ions and La/Li-site vacancies in sinterability and total ionic conduction properties of polycrystalline Li3xLa2/3−xTiO3 solid electrolytes (0.21 ≤ 3x ≤ 0.50), J. Alloys Compd. 458 (2008) 415. DOI: https://doi.org/10.1016/j.jallcom.2007.03.130
A. Dono and R. B. Cervera, Solid state reaction synthesis and characterization of lithium lanthanum titanate lithium-ion conducting solid electrolyte with different Li to La content, Key Eng. Mater. 821 (2019) 389. DOI: https://doi.org/10.4028/www.scientific.net/KEM.821.389
A. Mei et al., Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte, Electrochim. Acta 55 (2010) 2958. DOI: https://doi.org/10.1016/j.electacta.2010.01.036
A. C. Sutorik, M. D. Green, C. Cooper, J. Wolfenstine and G. Gilde, The comparative influences of structural ordering, grain size, Li-content, and bulk density on the Li+-conductivity of Li0.29La0.57TiO3, J. Mater. Sci. 47 (2012) 6992. DOI: https://doi.org/10.1007/s10853-012-6650-5
J. F. Wu and X. Guo, Size effect in nanocrystalline lithium-ion conducting perovskite: Li0.30La0.57TiO3, Solid State Ionics 310 (201) 38. DOI: https://doi.org/10.1016/j.ssi.2017.08.003
C. W. Ban and G. M. Choi, The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates, Solid State Ionics 140 (2001) 285. DOI: https://doi.org/10.1016/S0167-2738(01)00821-9
L. D. Trong, N. N. Dinh and P. D. Long, Annealing Effect on the Ionic Conductivity of La0.67-xLi3xTiO3 Made by Double Mechanical Alloying Method, J. Mater. Sci. Eng. B 4 (2014) 86. DOI: https://doi.org/10.17265/2161-6221/2014.04.003
T. Zinkevich, B. Schwarz, P. Braun, A. Weber and H. Ehrenberg, Effect of sintering temperature on Li diffusivity in Li0.29La0.57TiO3: local hopping and long-range transport, Solid State Ionics 357 (2020) 115486. DOI: https://doi.org/10.1016/j.ssi.2020.115486
H. Geng, A. Mei, Y. Lin and C. W. Nan, Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes, Mater. Sci. Eng. B 164 (2009) 91. DOI: https://doi.org/10.1016/j.mseb.2009.07.011
G. B. Kunshina, O. B. Shcherbina and V. I. Ivanenko, Study of transport properties and microstructure of lithium-conducting Li0.33La0.56TiO3 ceramic, Russ. J. Appl. Chem. 92 (2019) 1351. DOI: https://doi.org/10.1134/S1070427219100045
J. L. Fourquet, H. Duroy and M. P. Crosnier-Lopez, structural and microstructural studies of the series La2/3-xLi3x□1/3-2xTiO3, J. Solid State Chem. 127 (1996) 283. DOI: https://doi.org/10.1006/jssc.1996.0385
O. Bohnke, C. Bohnke anf J. L. Fourquet, Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate, Solid State Ionics 91 (1996) 21. DOI: https://doi.org/10.1016/S0167-2738(96)00434-1
O. Bohnke, J. Emery and J. L. Fourquet, Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3, Solid State Ionics 158 (2003) 119. DOI: https://doi.org/10.1016/S0167-2738(02)00720-8
I. C. Popovici, E. Chirila, V. Popescu, V. Ciupina, G. Prodan, Sol–gel preparation and characterization of perovskite lanthanum lithium titanate, J. Mater Sci. 42 (2007) 3373. DOI: https://doi.org/10.1007/s10853-006-0683-6
Y. Kobayashi, H. Miyashiro, T. Takeuchi, H. Shigemura, N. Balakrishnan, M. Tabuchi M., H. Kageyama, T. Iwahori, All-solid-state lithium secondary battery ceramic/polymer composite electrolyte, Solid State Ionics 152– 153 (2002) 137. DOI: https://doi.org/10.1016/S0167-2738(02)00366-1
A. Mei, Q. H. Jiang, Y. H. Lin, C. W. Nan, Lithium lanthanum titanium oxide solid-state electrolyte by spark plasma sintering, J. Alloys Compd. 486 (2009) 871. DOI: https://doi.org/10.1016/j.jallcom.2009.07.091
Y. Leyet et al., Obtention of Li3xLa2/3−xTiO3 ceramics from amorphous nanopowders by spark plasma sintering, Ferroelectrics 498 (2016) 62. DOI: https://doi.org/10.1080/00150193.2016.1167538
J. S. Pereira et al., La0.59Li0.24TiO3 ceramics obtained by spark plasma sintering: electric behavior analysis, Mater. Res. Express 6 (2019) 1. DOI: https://doi.org/10.1088/2053-1591/aae496
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 29-12-2022
Published 23-04-2023