Effect of dipolar interaction on magnetic properties of magnetite nanoparticles system: a simulation study
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/17642Keywords:
atomistic spin model simulation, magnetite nanoparticle, inter-particle interaction, dipolar interaction.Abstract
Superparamagnetic iron oxide nanoparticles are a potential candidate for novel research. The inter-particle interactions play a significant role in determining the overall magnetic behavior of a magnetic nanoparticle assembly, especially in dipolar interaction. In this paper, we have synthesized a practical sample and then applied an atomistic spin model simulation study with input parameters obtained from experimental measurements to investigate the influence of the dipolar interaction on the magnetic properties of Fe3O4 magnetite nanoparticles.
Downloads
Metrics
References
S. Jamil and MRSA Janjua, "Synthetic study and merits of Fe3O4 nanoparticles as emerging material." Journal of Cluster Science, 28 (2017) 2369. DOI: https://doi.org/10.1007/s10876-017-1256-3
Kolhatkar, Arati G., Yi-Ting Chen, Pawilai Chinwangso, Ivan Nekrashevich, Gamage C. Dannangoda, Ankit Singh, Andrew C. Jamison, "Magnetic sensing potential of Fe3O4 nanocubes exceeds that of Fe3O4 nanospheres." ACS omega, 2 (2017) 8010. DOI: https://doi.org/10.1021/acsomega.7b01312
Mahmoud. Abd El Aleem. Ali. Ali.El-Remaily "Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst." Tetrahedron, 70 (2014) 2971. DOI: https://doi.org/10.1016/j.tet.2014.03.024
Arsalani, Soudabeh, Eder J. Guidelli, Matheus A. Silveira, Carlos EG Salmon, Jefferson FDF Araujo, Antonio C. Bruno, and Oswaldo Baffa. "Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent." Journal of Magnetism and Magnetic Materials, 475 (2019) 458. DOI: https://doi.org/10.1016/j.jmmm.2018.11.132
Gawali, Santosh L., Sandeep B. Shelar, Jagriti Gupta, K. C. Barick, and P. A. Hassan. "Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application." International Journal of Biological Macromolecules, 166 (2021) 851. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.241
Yew, Yen Pin, Kamyar Shameli, Mikio Miyake, Nurul Bahiyah Bt Ahmad Khairudin, Shaza Eva Bt Mohamad, Takeru Naiki, and Kar Xin Lee. "Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review." Arabian Journal of Chemistry, 13, (2020) 2287. DOI: https://doi.org/10.1016/j.arabjc.2018.04.013
Patsula, Vitalii, Maksym Moskvin, Silvio Dutz, and Daniel Horák. "Size-dependent magnetic properties of iron oxide nanoparticles." Journal of Physics and Chemistry of Solids, 88 (2016) 24. DOI: https://doi.org/10.1016/j.jpcs.2015.09.008
Chatterjee, Jhunu, Yousef Haik, and Ching-Jen Chen. "Size dependent magnetic properties of iron oxide nanoparticles." Journal of Magnetism and Magnetic Materials, 257 (2003) 113. DOI: https://doi.org/10.1016/S0304-8853(02)01066-1
Yuan Yuan, Deniz Rende, Cem Levent Altan, Seyda Bucak, Rahmi Ozisik, and Diana-Andra Borca-Tasciuc, “Effect of surface modification on magnetization of iron oxide nanoparticle colloids”, American Chemical Society, Langmuir, 28 (2012) 13051. DOI: https://doi.org/10.1021/la3022479
I M Lourenço, M T Pelegrino, J C Pieretti1, G P Andrade, G Cerchiaro and A B Seabra, “Synthesis, characterization and cytotoxicity of chitosan-coated Fe3O4 nanoparticles functionalized with ascorbic acid for biomedical applications”, Journal of Physics: Conference Series, 1323 (2019) 012015. DOI: https://doi.org/10.1088/1742-6596/1323/1/012015
Hatice Kaplan Can, Serap Kavlak, Shahed ParviziKhosroshahi & Ali Güner, “Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs)”, Artificial Cells, Nanomedicine, and Biotechnology, 46 (2018) 421. DOI: https://doi.org/10.1080/21691401.2017.1315428
Gupta, Ranjeetkumar, Ketan Pancholi, Rulston De Sa, Duncan Murray, Dehong Huo, Ghazi Droubi, Maggie White, and James Njuguna. "Effect of oleic acid coating of iron oxide nanoparticles on properties of magnetic polyamide-6 nanocomposite." Jom, 71 (2019) 3119. DOI: https://doi.org/10.1007/s11837-019-03622-5
Larumbe, S., C. Gomez-Polo, J. I. Pérez-Landazábal, and J. M. Pastor. "Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles" Journal of Physics: Condensed Matter 24, no. 26 (2012): 266007. DOI: https://doi.org/10.1088/0953-8984/24/26/266007
Reza, Raúl, Carlos Martínez Pérez, Claudia Rodríguez González, Humberto Romero, and Perla García Casillas. "Effect of the polymeric coating over Fe3O4 particles used for magnetic separation." Open Chemistry, 8 (2010) 1041. DOI: https://doi.org/10.2478/s11532-010-0073-4
Sreeja, V., and P. A. Joy. "Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran." International journal of nanotechnology, 8 (2011) 907. DOI: https://doi.org/10.1504/IJNT.2011.044435
Abu-Bakr, Ali Fathi, and Andrey Zubarev. "Effect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles." Philosophical Transactions of the Royal Society A, 377 (2019) 20180216. DOI: https://doi.org/10.1098/rsta.2018.0216
Jönsson, Petra E. "Effects of interparticle interaction in ferromagnetic nanoparticle systems." Journal of Nanoscience and Nanotechnology, 10 (2010) 6067. DOI: https://doi.org/10.1166/jnn.2010.2591
Lima, E., J. M. Vargas, H. R. Rechenberg, and R. D. Zysler. "Interparticle interactions effects on the magnetic order in surface of Fe3O4 nanoparticles." Journal of Nanoscience and Nanotechnology, 8 (2008) 5913. DOI: https://doi.org/10.1166/jnn.2008.244
Aslibeiki, B., M. H. Ehsani, F. Nasirzadeh, and M. A. Mohammadi. "The effect of interparticle interactions on spin glass and hyperthermia properties of Fe3O4 nanoparticles." Materials Research Express, 4 (2017) 075051. DOI: https://doi.org/10.1088/2053-1591/aa7eb1
Gutiérrez, Lucía, Leonor De la Cueva, María Moros, Eva Mazarío, Sara De Bernardo, Jesús M. De la Fuente, M. Puerto Morales, and Gorka Salas. "Aggregation effects on the magnetic properties of iron oxide colloids." Nanotechnology, 30 (2019) 112001. DOI: https://doi.org/10.1088/1361-6528/aafbff
Branquinho, Luis C., Marcus S. Carrião, Anderson S. Costa, Nicholas Zufelato, Marcelo H. Sousa, Ronei Miotto, Robert Ivkov, and Andris F. Bakuzis. "Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia." Scientific reports, 3 (2013) 1. DOI: https://doi.org/10.1038/srep02887
Dubreuil, J., and J. S. Bobowski. "Ferromagnetic resonance in the complex permeability of an Fe3O4-based ferrofluid at radio and microwave frequencies." Journal of Magnetism and Magnetic Materials, 489 (2019) 165387. DOI: https://doi.org/10.1016/j.jmmm.2019.165387
Vakula, А. S., А. G. Belous, Т. V. Kalmykova, S. I. Petrushenko, V. N. Sukhov, and S. I. Tarapov. "Ferromagnetic resonance in the complex of Fe3O4 nanoparticles with organic compounds." Telecommunications and Radio Engineering, 77 (2018) 257. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i3.60
Myrovali, Eirini, Kyrillos Papadopoulos, Irene Iglesias, Marina Spasova, Michael Farle, Ulf Wiedwald, and Makis Angelakeris. "Long-range ordering effects in magnetic nanoparticles." ACS Applied Materials & Interfaces, 13 (2021) 21602. DOI: https://doi.org/10.1021/acsami.1c01820
D. S. Schmool and M. Schmalzl. "Magnetic dipolar interactions in nanoparticle systems: theory, simulations and ferromagnetic resonance." Advances in Nanoscale Magnetism, 122 (2009) 321. DOI: https://doi.org/10.1007/978-3-540-69882-1_15
Fabris, F., Kun-Hua Tu, C. A. Ross, and W. C. Nunes. "Influence of dipolar interactions on the magnetic properties of superparamagnetic particle systems." Journal of Applied Physics, 126 (2019) 173905. DOI: https://doi.org/10.1063/1.5125595
Evans, Richard FL, Weijia J. Fan, Phanwadee Chureemart, Thomas A. Ostler, Matthew OA Ellis, and Roy W. Chantrell, "Atomistic spin model simulations of magnetic nanomaterials." Journal of Physics: Condensed Matter, 26 (2014) 103202. DOI: https://doi.org/10.1088/0953-8984/26/10/103202
Gubernatis, James E. "Marshall Rosenbluth and the Metropolis algorithm." Physics of plasmas, 12 (2005) 057303. DOI: https://doi.org/10.1063/1.1887186
Gilbert, Thomas L. "A Lagrangian formulation of the gyromagnetic equation of the magnetization field." Phys. Rev. 100 (1955) 1243.
Evans, Richard FL, Levente Rózsa, Sarah Jenkins, and Unai Atxitia. "Temperature scaling of two-ion anisotropy in pure and mixed anisotropy systems." Physical Review B, 102 (2020) 020412. DOI: https://doi.org/10.1103/PhysRevB.102.020412
Bowden, G. J., G. B. G. Stenning, and G. Van der Laan. "Inter and intra macro-cell model for point dipole–dipole energy calculations." Journal of Physics: Condensed Matter, 28 (2016) 066001. DOI: https://doi.org/10.1088/0953-8984/28/6/066001
Zhi, Huiqiang, Tiehua Ma, Dongxing Pei, and Hexuan Sun. "A novel magnetic dipole inversion method based on tensor geometric invariants." AIP Advances, 10 (2020) 045131. DOI: https://doi.org/10.1063/5.0003898
Schlickeiser, Frank. "Multi-scale modeling of the thermal control of magnetic nanostructures." PhD diss, (2016).
Arjmand, Doghonay, Mikhail Poluektov, and Gunilla Kreiss. "Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature." Advances in Computational Mathematics, 44 (2018) 1119. DOI: https://doi.org/10.1007/s10444-017-9575-3
Hoang Thanh Nguyen and Tuan Manh Nguyen, "Investigation of Magnetic Properties of Magnetic Poly (glycidyl methacrylate) Microspheres: Experimental and Theoretical." Advances in Materials Science and Engineering, 2021 (2021). DOI: https://doi.org/10.1155/2021/6676453
C. Anushree, John Philip, “Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method”, Colloids and Surfaces A, 567 (2019) 193. DOI: https://doi.org/10.1016/j.colsurfa.2019.01.057
Walid M. Daoush, "Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications." J. Nanomed. Res, 5 (2017) 00118. DOI: https://doi.org/10.15406/jnmr.2017.05.00118
K. Petcharoen and A. J. M. S. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method." Materials Science and Engineering: B, 177 (2012) 421. DOI: https://doi.org/10.1016/j.mseb.2012.01.003
García-Palacios, José Luis, and Francisco J. Lázaro. "Langevin-dynamics study of the dynamical properties of small magnetic particles." Physical Review B, 58 (1998) 14937. DOI: https://doi.org/10.1103/PhysRevB.58.14937
Mamiya, Hiroaki, Hiroya Fukumoto, Jhon L. Cuya Huaman, Kazumasa Suzuki, Hiroshi Miyamura, and Jeyadevan Balachandran. "Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia." ACS nano, 14, (2020) 8421. DOI: https://doi.org/10.1021/acsnano.0c02521
Shagholani, Hamidreza, Sayed Mehdi Ghoreishi, and Mohammad Mousazadeh. "Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application." International journal of biological macromolecules, 78 (2015) 130. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.042
Rippard, William, Ranko Heindl, Matthew Pufall, Stephen Russek, and Anthony Kos. "Thermal relaxation rates of magnetic nanoparticles in the presence of magnetic fields and spin-transfer effects." Physical Review B, 84 (2011) 064439. DOI: https://doi.org/10.1103/PhysRevB.84.064439
Bruvera, Ignacio Javier, Pedro Mendoza Zélis, M. Pilar Calatayud, Gerardo Fabián Goya, and Francisco Homero Sánchez. "Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly." Journal of Applied Physics, 118 (2015) 184304. DOI: https://doi.org/10.1063/1.4935484
Martinez, B., X. Obradors, Ll Balcells, A. Rouanet, and C. Monty. "Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles." Physical Review Letters, 80, (1998) 181. DOI: https://doi.org/10.1103/PhysRevLett.80.181
Dormann, J. L. "Properties of magnetically interacting small particles." In Magnetic Properties of Fine Particles, Elsevier, 1992. DOI: https://doi.org/10.1016/B978-0-444-89552-3.50019-0
Panda, R. N., N. S. Gajbhiye, and G. Balaji. "Magnetic properties of interacting single domain Fe3O4 particles." Journal of alloys and compounds, 326 (2001) 50. DOI: https://doi.org/10.1016/S0925-8388(01)01225-7
Nikiforov, V. N., Yu A. Koksharov, S. N. Polyakov, A. P. Malakho, A. V. Volkov, M. A. Moskvina, G. B. Khomutov, and V. Yu Irkhin. "Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film." Journal of alloys and compounds, 569 (2013) 58. DOI: https://doi.org/10.1016/j.jallcom.2013.02.059
Majewski, Peter, and Benjamin Thierry, “Functionalized magnetite nanoparticles synthesis, properties, and bioapplications”, CRC Press, (2008). DOI: https://doi.org/10.1201/9781420007534.ch15
Jönsson, Petra E. "Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems.", Advances in Chemical Physics, 128 (2003) 191. DOI: https://doi.org/10.1002/0471484237.ch3
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers ĐLTE00.02/22-23
Accepted 23-05-2023
Published 12-08-2023