Effect of dipolar interaction on magnetic properties of magnetite nanoparticles system: a simulation study

N. T. Hoang, T. N. Lan, N. M. Tuan
Author affiliations


  • N. T. Hoang \(^1\)Ho Chi Minh City Institute of Physics, National Institute of Applied mechanics and informatics, Vietnam academy of science and technology, 1 Mac Dinh Chi, District 1, Ho Chi Minh city, Vietnam;
    \(^2\)Graduate university of science and technology, Vietnam academy of science and technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi city, Vietnam
  • T. N. Lan Department of Physics, International University, Vietnam National University Ho Chi Minh city, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh city, Vietnam
  • N. M. Tuan Institute of applied materials science, Vietnam academy of science and technology, 1B TL29, District 12, Ho Chi Minh city, Vietnam




atomistic spin model simulation, magnetite nanoparticle, inter-particle interaction, dipolar interaction.


Superparamagnetic iron oxide nanoparticles are a potential candidate for novel research. The inter-particle interactions play a significant role in determining the overall magnetic behavior of a magnetic nanoparticle assembly, especially in dipolar interaction. In this paper, we have synthesized a practical sample and then applied an atomistic spin model simulation study with input parameters obtained from experimental measurements to investigate the influence of the dipolar interaction on the magnetic properties of Fe3O4 magnetite nanoparticles. 


Download data is not yet available.


S. Jamil and MRSA Janjua, "Synthetic study and merits of Fe3O4 nanoparticles as emerging material." Journal of Cluster Science, 28 (2017) 2369. DOI: https://doi.org/10.1007/s10876-017-1256-3

Kolhatkar, Arati G., Yi-Ting Chen, Pawilai Chinwangso, Ivan Nekrashevich, Gamage C. Dannangoda, Ankit Singh, Andrew C. Jamison, "Magnetic sensing potential of Fe3O4 nanocubes exceeds that of Fe3O4 nanospheres." ACS omega, 2 (2017) 8010. DOI: https://doi.org/10.1021/acsomega.7b01312

Mahmoud. Abd El Aleem. Ali. Ali.El-Remaily "Synthesis of pyranopyrazoles using magnetic Fe3O4 nanoparticles as efficient and reusable catalyst." Tetrahedron, 70 (2014) 2971. DOI: https://doi.org/10.1016/j.tet.2014.03.024

Arsalani, Soudabeh, Eder J. Guidelli, Matheus A. Silveira, Carlos EG Salmon, Jefferson FDF Araujo, Antonio C. Bruno, and Oswaldo Baffa. "Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent." Journal of Magnetism and Magnetic Materials, 475 (2019) 458. DOI: https://doi.org/10.1016/j.jmmm.2018.11.132

Gawali, Santosh L., Sandeep B. Shelar, Jagriti Gupta, K. C. Barick, and P. A. Hassan. "Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application." International Journal of Biological Macromolecules, 166 (2021) 851. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.241

Yew, Yen Pin, Kamyar Shameli, Mikio Miyake, Nurul Bahiyah Bt Ahmad Khairudin, Shaza Eva Bt Mohamad, Takeru Naiki, and Kar Xin Lee. "Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review." Arabian Journal of Chemistry, 13, (2020) 2287. DOI: https://doi.org/10.1016/j.arabjc.2018.04.013

Patsula, Vitalii, Maksym Moskvin, Silvio Dutz, and Daniel Horák. "Size-dependent magnetic properties of iron oxide nanoparticles." Journal of Physics and Chemistry of Solids, 88 (2016) 24. DOI: https://doi.org/10.1016/j.jpcs.2015.09.008

Chatterjee, Jhunu, Yousef Haik, and Ching-Jen Chen. "Size dependent magnetic properties of iron oxide nanoparticles." Journal of Magnetism and Magnetic Materials, 257 (2003) 113. DOI: https://doi.org/10.1016/S0304-8853(02)01066-1

Yuan Yuan, Deniz Rende, Cem Levent Altan, Seyda Bucak, Rahmi Ozisik, and Diana-Andra Borca-Tasciuc, “Effect of surface modification on magnetization of iron oxide nanoparticle colloids”, American Chemical Society, Langmuir, 28 (2012) 13051. DOI: https://doi.org/10.1021/la3022479

I M Lourenço, M T Pelegrino, J C Pieretti1, G P Andrade, G Cerchiaro and A B Seabra, “Synthesis, characterization and cytotoxicity of chitosan-coated Fe3O4 nanoparticles functionalized with ascorbic acid for biomedical applications”, Journal of Physics: Conference Series, 1323 (2019) 012015. DOI: https://doi.org/10.1088/1742-6596/1323/1/012015

Hatice Kaplan Can, Serap Kavlak, Shahed ParviziKhosroshahi & Ali Güner, “Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs)”, Artificial Cells, Nanomedicine, and Biotechnology, 46 (2018) 421. DOI: https://doi.org/10.1080/21691401.2017.1315428

Gupta, Ranjeetkumar, Ketan Pancholi, Rulston De Sa, Duncan Murray, Dehong Huo, Ghazi Droubi, Maggie White, and James Njuguna. "Effect of oleic acid coating of iron oxide nanoparticles on properties of magnetic polyamide-6 nanocomposite." Jom, 71 (2019) 3119. DOI: https://doi.org/10.1007/s11837-019-03622-5

Larumbe, S., C. Gomez-Polo, J. I. Pérez-Landazábal, and J. M. Pastor. "Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles" Journal of Physics: Condensed Matter 24, no. 26 (2012): 266007. DOI: https://doi.org/10.1088/0953-8984/24/26/266007

Reza, Raúl, Carlos Martínez Pérez, Claudia Rodríguez González, Humberto Romero, and Perla García Casillas. "Effect of the polymeric coating over Fe3O4 particles used for magnetic separation." Open Chemistry, 8 (2010) 1041. DOI: https://doi.org/10.2478/s11532-010-0073-4

Sreeja, V., and P. A. Joy. "Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran." International journal of nanotechnology, 8 (2011) 907. DOI: https://doi.org/10.1504/IJNT.2011.044435

Abu-Bakr, Ali Fathi, and Andrey Zubarev. "Effect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles." Philosophical Transactions of the Royal Society A, 377 (2019) 20180216. DOI: https://doi.org/10.1098/rsta.2018.0216

Jönsson, Petra E. "Effects of interparticle interaction in ferromagnetic nanoparticle systems." Journal of Nanoscience and Nanotechnology, 10 (2010) 6067. DOI: https://doi.org/10.1166/jnn.2010.2591

Lima, E., J. M. Vargas, H. R. Rechenberg, and R. D. Zysler. "Interparticle interactions effects on the magnetic order in surface of Fe3O4 nanoparticles." Journal of Nanoscience and Nanotechnology, 8 (2008) 5913. DOI: https://doi.org/10.1166/jnn.2008.244

Aslibeiki, B., M. H. Ehsani, F. Nasirzadeh, and M. A. Mohammadi. "The effect of interparticle interactions on spin glass and hyperthermia properties of Fe3O4 nanoparticles." Materials Research Express, 4 (2017) 075051. DOI: https://doi.org/10.1088/2053-1591/aa7eb1

Gutiérrez, Lucía, Leonor De la Cueva, María Moros, Eva Mazarío, Sara De Bernardo, Jesús M. De la Fuente, M. Puerto Morales, and Gorka Salas. "Aggregation effects on the magnetic properties of iron oxide colloids." Nanotechnology, 30 (2019) 112001. DOI: https://doi.org/10.1088/1361-6528/aafbff

Branquinho, Luis C., Marcus S. Carrião, Anderson S. Costa, Nicholas Zufelato, Marcelo H. Sousa, Ronei Miotto, Robert Ivkov, and Andris F. Bakuzis. "Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia." Scientific reports, 3 (2013) 1. DOI: https://doi.org/10.1038/srep02887

Dubreuil, J., and J. S. Bobowski. "Ferromagnetic resonance in the complex permeability of an Fe3O4-based ferrofluid at radio and microwave frequencies." Journal of Magnetism and Magnetic Materials, 489 (2019) 165387. DOI: https://doi.org/10.1016/j.jmmm.2019.165387

Vakula, А. S., А. G. Belous, Т. V. Kalmykova, S. I. Petrushenko, V. N. Sukhov, and S. I. Tarapov. "Ferromagnetic resonance in the complex of Fe3O4 nanoparticles with organic compounds." Telecommunications and Radio Engineering, 77 (2018) 257. DOI: https://doi.org/10.1615/TelecomRadEng.v77.i3.60

Myrovali, Eirini, Kyrillos Papadopoulos, Irene Iglesias, Marina Spasova, Michael Farle, Ulf Wiedwald, and Makis Angelakeris. "Long-range ordering effects in magnetic nanoparticles." ACS Applied Materials & Interfaces, 13 (2021) 21602. DOI: https://doi.org/10.1021/acsami.1c01820

D. S. Schmool and M. Schmalzl. "Magnetic dipolar interactions in nanoparticle systems: theory, simulations and ferromagnetic resonance." Advances in Nanoscale Magnetism, 122 (2009) 321. DOI: https://doi.org/10.1007/978-3-540-69882-1_15

Fabris, F., Kun-Hua Tu, C. A. Ross, and W. C. Nunes. "Influence of dipolar interactions on the magnetic properties of superparamagnetic particle systems." Journal of Applied Physics, 126 (2019) 173905. DOI: https://doi.org/10.1063/1.5125595

Evans, Richard FL, Weijia J. Fan, Phanwadee Chureemart, Thomas A. Ostler, Matthew OA Ellis, and Roy W. Chantrell, "Atomistic spin model simulations of magnetic nanomaterials." Journal of Physics: Condensed Matter, 26 (2014) 103202. DOI: https://doi.org/10.1088/0953-8984/26/10/103202

Gubernatis, James E. "Marshall Rosenbluth and the Metropolis algorithm." Physics of plasmas, 12 (2005) 057303. DOI: https://doi.org/10.1063/1.1887186

Gilbert, Thomas L. "A Lagrangian formulation of the gyromagnetic equation of the magnetization field." Phys. Rev. 100 (1955) 1243.

Evans, Richard FL, Levente Rózsa, Sarah Jenkins, and Unai Atxitia. "Temperature scaling of two-ion anisotropy in pure and mixed anisotropy systems." Physical Review B, 102 (2020) 020412. DOI: https://doi.org/10.1103/PhysRevB.102.020412

Bowden, G. J., G. B. G. Stenning, and G. Van der Laan. "Inter and intra macro-cell model for point dipole–dipole energy calculations." Journal of Physics: Condensed Matter, 28 (2016) 066001. DOI: https://doi.org/10.1088/0953-8984/28/6/066001

Zhi, Huiqiang, Tiehua Ma, Dongxing Pei, and Hexuan Sun. "A novel magnetic dipole inversion method based on tensor geometric invariants." AIP Advances, 10 (2020) 045131. DOI: https://doi.org/10.1063/5.0003898

Schlickeiser, Frank. "Multi-scale modeling of the thermal control of magnetic nanostructures." PhD diss, (2016).

Arjmand, Doghonay, Mikhail Poluektov, and Gunilla Kreiss. "Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature." Advances in Computational Mathematics, 44 (2018) 1119. DOI: https://doi.org/10.1007/s10444-017-9575-3

Hoang Thanh Nguyen and Tuan Manh Nguyen, "Investigation of Magnetic Properties of Magnetic Poly (glycidyl methacrylate) Microspheres: Experimental and Theoretical." Advances in Materials Science and Engineering, 2021 (2021). DOI: https://doi.org/10.1155/2021/6676453

C. Anushree, John Philip, “Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method”, Colloids and Surfaces A, 567 (2019) 193. DOI: https://doi.org/10.1016/j.colsurfa.2019.01.057

Walid M. Daoush, "Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications." J. Nanomed. Res, 5 (2017) 00118. DOI: https://doi.org/10.15406/jnmr.2017.05.00118

K. Petcharoen and A. J. M. S. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method." Materials Science and Engineering: B, 177 (2012) 421. DOI: https://doi.org/10.1016/j.mseb.2012.01.003

García-Palacios, José Luis, and Francisco J. Lázaro. "Langevin-dynamics study of the dynamical properties of small magnetic particles." Physical Review B, 58 (1998) 14937. DOI: https://doi.org/10.1103/PhysRevB.58.14937

Mamiya, Hiroaki, Hiroya Fukumoto, Jhon L. Cuya Huaman, Kazumasa Suzuki, Hiroshi Miyamura, and Jeyadevan Balachandran. "Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia." ACS nano, 14, (2020) 8421. DOI: https://doi.org/10.1021/acsnano.0c02521

Shagholani, Hamidreza, Sayed Mehdi Ghoreishi, and Mohammad Mousazadeh. "Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application." International journal of biological macromolecules, 78 (2015) 130. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.042

Rippard, William, Ranko Heindl, Matthew Pufall, Stephen Russek, and Anthony Kos. "Thermal relaxation rates of magnetic nanoparticles in the presence of magnetic fields and spin-transfer effects." Physical Review B, 84 (2011) 064439. DOI: https://doi.org/10.1103/PhysRevB.84.064439

Bruvera, Ignacio Javier, Pedro Mendoza Zélis, M. Pilar Calatayud, Gerardo Fabián Goya, and Francisco Homero Sánchez. "Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly." Journal of Applied Physics, 118 (2015) 184304. DOI: https://doi.org/10.1063/1.4935484

Martinez, B., X. Obradors, Ll Balcells, A. Rouanet, and C. Monty. "Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles." Physical Review Letters, 80, (1998) 181. DOI: https://doi.org/10.1103/PhysRevLett.80.181

Dormann, J. L. "Properties of magnetically interacting small particles." In Magnetic Properties of Fine Particles, Elsevier, 1992. DOI: https://doi.org/10.1016/B978-0-444-89552-3.50019-0

Panda, R. N., N. S. Gajbhiye, and G. Balaji. "Magnetic properties of interacting single domain Fe3O4 particles." Journal of alloys and compounds, 326 (2001) 50. DOI: https://doi.org/10.1016/S0925-8388(01)01225-7

Nikiforov, V. N., Yu A. Koksharov, S. N. Polyakov, A. P. Malakho, A. V. Volkov, M. A. Moskvina, G. B. Khomutov, and V. Yu Irkhin. "Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film." Journal of alloys and compounds, 569 (2013) 58. DOI: https://doi.org/10.1016/j.jallcom.2013.02.059

Majewski, Peter, and Benjamin Thierry, “Functionalized magnetite nanoparticles synthesis, properties, and bioapplications”, CRC Press, (2008). DOI: https://doi.org/10.1201/9781420007534.ch15

Jönsson, Petra E. "Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems.", Advances in Chemical Physics, 128 (2003) 191. DOI: https://doi.org/10.1002/0471484237.ch3




How to Cite

H. T. Nguyen, T. N. Lan and T. N. M., Effect of dipolar interaction on magnetic properties of magnetite nanoparticles system: a simulation study, Comm. Phys. 33 (2023) 285. DOI: https://doi.org/10.15625/0868-3166/17642.