Investigate the potential of using reactor anti-neutrinos for nuclear safeguards in Vietnam

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/17494

Keywords:

vietnam reactor, neutrino detection, safeguard, Pu isotope

Abstract

One of the most abundant man-made sources of low energy (few~MeVs) neutrinos, reactor neutrino, is not only useful for studying neutrino properties, but it is also used in practical applications. In this study, we investigate the potential of using reactor neutrino detectors for nuclear safeguards in Vietnam, specifically at the Dalat Nuclear Reactor, a future research facility, and presumably commercial reactors with 500~kW, 10~MW, and 1000~MW thermal powers, respectively. We compute the rate of observed inverted beta decay events, as well as the statistical significance of extracting isotope composition under the practical assumptions of detector mass, detection efficiency, and background level. We find that a 1-ton detector mass can allow us to detect the reactor's on-off transition state from a few hours to a few days, depending on the standoff distance and reactor thermal power. We investigate how background and energy resolution affect the precision of the extracted weapon-usable \(^{239}\)Pu isotope. We conclude that in order to distinguish the 10% variation of the \(^{239}\)Pu in the 10~MW thermal power reactor, a 1-ton detector placed 50~m away must achieve 1% background level. Increasing the statistics by using a 10x larger detector or placing it \(\sqrt{10}\) times closer to the reactor alleviates the requirement of the background level to 10%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

W. Pauli, Dear radioactive ladies and gentlemen, Phys. Today 31N9 (1978) 27.

F. Reines and C. L. Cowan, The neutrino, Nature 178 (1956) 446. DOI: https://doi.org/10.1038/178446a0

M. Goldhaber, L. Grodzins and A. W. Sunyar, Evidence for Circular Polarization of Bremsstrahlung Produced by Beta Rays, Phys. Rev. 106 (1957) 826. DOI: https://doi.org/10.1103/PhysRev.106.826

T. Kajita, Nobel lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016) 030501. DOI: https://doi.org/10.1103/RevModPhys.88.030501

A. B. McDonald, Nobel lecture: The sudbury neutrino observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502. DOI: https://doi.org/10.1103/RevModPhys.88.030502

PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.

T2K collaboration, Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020) 339 [1910.03887].

M. S. Athar et al., Status and Perspectives of Neutrino Physics, arXiv hep-ph 2111.07586 (2021).

O. Akindele et al., Nu Tools: Exploring Practical Roles for Neutrinos in Nuclear Energy and Security, arXiv hep-ph 2112.12593 (2021) . DOI: https://doi.org/10.2172/1826602

A. A. B. L. A. Mika´elyan, Possibilities of the practical use of neutrinos, Atomic Energy 44 (1978) 589. DOI: https://doi.org/10.1007/BF01117861

Y. V. K. V. I. K. L. A. M. et al., Neutrino method remote measurement of reactor power and power output, Atomic Energy 76 (1994) 123. DOI: https://doi.org/10.1007/BF02414355

Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503. DOI: https://doi.org/10.1016/0550-3213(94)00513-E

A. Bernstein, Y.-f. Wang, G. Gratta and T. West, Nuclear reactor safeguards and monitoring with anti-neutrino detectors, J. Appl. Phys. 91 (2002) 4672 [nucl-ex/0108001]. DOI: https://doi.org/10.1063/1.1452775

A. Bernstein, N. S. Bowden, A. Misner and T. Palmer, Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector, J. Appl. Phys. 103 (2008) 074905 [0804.4723]. DOI: https://doi.org/10.1063/1.2899178

H. Furuta et al., A Study of Reactor Neutrino Monitoring at Experimental Fast Reactor JOYO, Nucl. Instrum. Meth. A 662 (2012) 90 [1108.2910].

R. Carr et al., Neutrino-based tools for nuclear verification and diplomacy in North Korea, arXiv physics.soc-ph1811.04737 (2018) .

PROSPECT collaboration, First search for short-baseline neutrino oscillations at HFIR with PROSPECT, Phys. Rev. Lett. 121 (2018) 251802 [1806.02784].

A. Bernstein et al., Colloquium: Neutrino detectors as tools for nuclear security, Rev. Mod. Phys. 92 (2020) 011003. DOI: https://doi.org/10.1103/RevModPhys.92.011003

N. S. Bowden et al., Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors, Nucl. Instrum. Meth. A 572 (2007) 985 [physics/0612152]. DOI: https://doi.org/10.1016/j.nima.2006.12.015

D. Reyna, “A compact and portable antineutrino detector for reactor monitoring..” https://www.osti.gov/biblio/1290207, 2012.

M. Battaglieri et al., An anti-neutrino detector to monitor nuclear reactor’s power and fuel composition, Nucl. Instrum. Meth. A 617 (2010) 209. DOI: https://doi.org/10.1016/j.nima.2009.09.031

Y. Kuroda et al., A mobile antineutrino detector with plastic scintillators, Nucl. Instrum. Meth. A 690 (2012) 41 [1206.6566]. DOI: https://doi.org/10.1016/j.nima.2012.06.040

NUCIFER collaboration, Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev. D 93 (2016) 112006 [1509.05610].

J. Carroll et al., Monitoring Reactor Anti-Neutrinos Using a Plastic Scintillator Detector in a Mobile Laboratory, arXiv physics.ins-det1811.01006 (2018).

J. Coleman et al., VIDARR: Aboveground Reactor Monitoring, in J. Phys. Conf. Ser., vol. 1216, p. 012007, 2019, DOI. DOI: https://doi.org/10.1088/1742-6596/1216/1/012007

R. Dorrill, Nulat: A compact, segmented, mobile anti-neutrino detector, in J. Phys. Conf. Ser., vol. 1216, p. 012011, IOP Publishing, 2019. DOI: https://doi.org/10.1088/1742-6596/1216/1/012011

WATCHMAN collaboration, The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos, arXiv physics.ins-det 1502.01132 (2015) .

SOLID collaboration, Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment, JINST 13 (2018) P05005 [1802.02884].

SOLID collaboration, SoLid: a short baseline reactor neutrino experiment, JINST 16 (2021) P02025 [2002.05914].

I. Alekseev et al., DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator, JINST 11 (2016) P11011 [1606.02896]. DOI: https://doi.org/10.1088/1748-0221/11/11/P11011

NEOS collaboration, Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017) 121802 [1610.05134]. DOI: https://doi.org/10.1103/PhysRevLett.118.121802

A. Haghighat et al., Observation of Reactor Antineutrinos with a Rapidly-Deployable Surface-Level Detector, Phys. Rev. Applied 13 (2020) 034028 [1812.02163]. DOI: https://doi.org/10.1103/PhysRevApplied.13.034028

H. Lima Jr et al., Neutrinos angra experiment: commissioning and first operational measurements, JINST 14 (2019) P06010. DOI: https://doi.org/10.1088/1748-0221/14/06/P06010

STEREO collaboration, Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data, Phys. Rev. Lett. 121 (2018) 161801 [1806.02096]. DOI: https://doi.org/10.1103/PhysRevLett.121.161801

NEUTRINO-4 collaboration, First Observation of the Oscillation Effect in the Neutrino-4 Experiment on the Search for the Sterile Neutrino, Pisma Zh. Eksp. Teor. Fiz. 109 (2019) 209 [1809.10561].

JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [1507.05613]. DOI: https://doi.org/10.1088/0954-3899/43/3/030401

J. M. Berryman and P. Huber, Sterile Neutrinos and the Global Reactor Antineutrino Dataset, JHEP 01 (2021) 167 [2005.01756]. DOI: https://doi.org/10.1007/JHEP01(2021)167

M. Estienne et al., Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes, Phys. Rev. Lett. 123 (2019) 022502 [1904.09358]. DOI: https://doi.org/10.1103/PhysRevLett.123.022502

P. Huber, “Neutrino science and nuclear security.” https://doi.org/10.5281/zenodo.6683772, June, 2022.

P. Huber and T. Schwetz, Precision spectroscopy with reactor antineutrinos, Phys. Rev. D 70 (2004) 053011. DOI: https://doi.org/10.1103/PhysRevD.70.053011

K. Schreckenbach et al., Absolute measurement of the beta spectrum from 235u fission as a basis for reactor antineutrino experiments, Phys. Lett. B 99 (1981) 251. DOI: https://doi.org/10.1016/0370-2693(81)91120-5

K. Schreckenbach et al., Determination of the antineutrino spectrum from 235u thermal neutron fission products up to 9.5 mev, Phys. Lett. B 160 (1985) 325. DOI: https://doi.org/10.1016/0370-2693(85)91337-1

F. von Feilitzsch et al., Experimental beta-spectra from 239pu and 235u thermal neutron fission products and their correlated antineutrino spectra, Phys. Lett. B 118 (1982) 162. DOI: https://doi.org/10.1016/0370-2693(82)90622-0

A. Hahn et al., Antineutrino spectra from 241pu and 239pu thermal neutron fission products, Phys. Lett. B 218 (1989) 365. DOI: https://doi.org/10.1016/0370-2693(89)91598-0

N. Haag et al., Experimental Determination of the Antineutrino Spectrum of the Fission Products of 238U, Phys. Rev. Lett. 112 (2014) 122501 [1312.5601]. DOI: https://doi.org/10.1103/PhysRevLett.112.122501

T. A. Mueller et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) . DOI: https://doi.org/10.1103/PhysRevC.83.054615

P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617. DOI: https://doi.org/10.1103/PhysRevC.84.024617

L. Hayen, J. Kostensalo, N. Severijns and J. Suhonen, First-forbidden transitions in the reactor anomaly, Phys.

Rev. C 100 (2019) 054323 [1908.08302].

P. Vogel and J. F. Beacom, Angular distribution of neutron inverse beta decay, ¯ ne + p!e+ +n, Phys. Rev. D 60 (1999) . DOI: https://doi.org/10.1103/PhysRevD.60.053003

N. D. Nguyen et al., Results of operation and utilization of the dalat nuclear research reactor, Nuclear Science and Technology 4 (2014) 1. DOI: https://doi.org/10.53747/jnst.v4i1.208

N.-D. Nguyen, K.-C. Nguyen, T.-N. Huynh, D.-H.-D. Vo and H.-N. Tran, Conceptual design of a 10 mw multipurpose research reactor using vvr-kn fuel, Science and Technology of Nuclear Installations 2020 (2020) 7972827. DOI: https://doi.org/10.1155/2020/7972827

Q. B. Do, G. T. Phan, K.-C. Nguyen, Q. H. Ngo and H.-N. Tran, Criticality and rod worth analysis of the dnrr research reactor using the srac and mcnp5 codes, Nuclear Engineering and Design 343 (2019) 197. DOI: https://doi.org/10.1016/j.nucengdes.2019.01.011

G. T. Phan, Q. B. Do, Q. H. Ngo, T. A. Tran and H.-N. Tran, Application of differential evolution algorithm for fuel loading optimization of the dnrr research reactor, Nuclear Engineering and Design 362 (2020) 110582 DOI: https://doi.org/10.1016/j.nucengdes.2020.110582

.

“Nuclear power in vietnam.” https://world-nuclear.org.

P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B645 (2002) 3 [hep-ph/0204352]. DOI: https://doi.org/10.1016/S0550-3213(02)00825-8

N. H. D. Thanh et al., Multi-pixel Photon Counter for operating the tabletop cosmic-ray detector under loosely controlled conditions, arXiv physics.ins-det 2106.08603 (2021) .

Downloads

Published

24-04-2023

How to Cite

[1]
S. Cao, N. Tran, V. Nguyen and Q. Phan, Investigate the potential of using reactor anti-neutrinos for nuclear safeguards in Vietnam, Comm. Phys. 33 (2023) 169. DOI: https://doi.org/10.15625/0868-3166/17494.

Issue

Section

Papers

Funding data

Received 08-09-2022
Accepted 05-01-2023
Published 24-04-2023