DFT investigation of pyramidal Au\(_{9}\)M\(^{2+}\) and Au\(_{19}\)M (M = Sc-Ni): similarities and differences of structural evolution, electronic and magnetic properties

Ngo Thi Lan, Nguyen Thi Mai, Nguyen Van Dang, Nguyen Thanh Tung
Author affiliations

Authors

  • Ngo Thi Lan \(^{1}\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
    \(^{2}\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology;
    \(^{3}\)Institute of Science and Technology, TNU - University of Science, Tan Thinh Ward, Thai Nguyen City Thai Nguyen, 250000, Vietnam
  • Nguyen Thi Mai \(^{1}\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
    \(^{2}\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Van Dang Institute of Science and Technology, TNU - University of Science, Tan Thinh Ward, Thai Nguyen City Thai Nguyen, 250000, Vietnam
  • Nguyen Thanh Tung \(^{1}\)Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam;
    \(^{2}\)Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    https://orcid.org/0000-0003-0232-7261

DOI:

https://doi.org/10.15625/0868-3166/17431

Keywords:

Au\(_{19}\)Cr, Au\(_{9}\)Cr\(^{2 }\) clusters, density functional theory, superatoms

Abstract

Au102+ and Au20 pyramids, whose stability and inertness are comparable to those of carbon fullerene C60, are considered as important landmarks in the long-history investigation of gold nanoclusters. Numerous experimental and theoretical studies on doping Au102+ and Au20 with transition metal atoms have been carried out for specific properties that can be used as advanced materials in nanotechnology applications. In this work, we discussed the similarities and differences between the structural, stability, and electronic properties of Au9M2+ and Au19M (M = Sc-Ni) clusters using density functional theory calculations. It is found that except for the preferred dopant site, the structural evolution of Au9M2+ cluster resembles that of Au19M in general. Although the V dopant seems to be the important ingredient for the structural transformation in both species, it is remarkable that the transformation appears stronger in Au19V compared with Au9V2+.  The calculated average binding energies are utilized to identify their relative stable patterns. Depending on the 3d transition metal atom dopant, the spin magnetic moments of Au9M2+ and Au19­M clusters vary from 0 to 5 μB, reaching the highest value with the Cr-doped species. We show that both Au9Cr2+ and Au19Cr have similarities in the electronic structures and are potential magnetic superatoms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Y. Gao, N. Shao, Y. Pei, Z. Chen, and X. C. Zeng, Catalytic activities of subnanometer gold clusters (Au16–Au18, Au20, and Au27–Au35) for CO oxidation, ACS nano 5 (2011) 7818. DOI: https://doi.org/10.1021/nn201817b

Y. Sun, X. Liu, K. Xiao, Y. Zhu, and M. Chen, Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction, ACS Catalysis 11 (2021) 11551. DOI: https://doi.org/10.1021/acscatal.1c02193

M.-W. Chang, L. Zhang, M. Davids, I. A. W. Filot, and E. J. M. Hensen, Dynamics of gold clusters on ceria during CO oxidation, J. Catalysis 392 (2020) 39. DOI: https://doi.org/10.1016/j.jcat.2020.09.027

S. Zhu, X. Wang, Y. Cong, and L. Li, Regulating the optical properties of gold nanoclusters for biological applications, ACS Omega 5 (36) (2020) 22702. DOI: https://doi.org/10.1021/acsomega.0c03218

P. Pyykko, Theoretical chemistry of gold. III, Chem. Soc. Rev. 37 (2008) 1967. DOI: https://doi.org/10.1039/b708613j

R. Olson, S. Varganov, M. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S. Kucharski, M. Musial, Where does the planar-to-nonplanar turnover occur in small gold clusters?, J. Am. Chem. Soc. 127 (2005) 1049. DOI: https://doi.org/10.1021/ja040197l

M. Gruber, G. Heimel, L. Romaner, J.L. Bredas, E. Zojer, First-principles study of the geometric and electronic structure of Au13 clusters: Importance of the prism motif, Phys. Rev. B 77 (2008) 165411. DOI: https://doi.org/10.1103/PhysRevB.77.165411

P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Structures of neutral Au7, Au19, and Au20 clusters in the gas phase, Science 321 (2008) 674. DOI: https://doi.org/10.1126/science.1161166

S. Bulusu, X. Zeng, Structures and relative stability of neutral gold clusters: Aun (n=15-19), J. Chem. Phys. 125 (2006) 154303. DOI: https://doi.org/10.1063/1.2352755

W. Fa, J. Dong, Possible ground-state structure of Au26: A highly symmetric tubelike cage, J. Chem. Phys. 124 (2006) 114310. DOI: https://doi.org/10.1063/1.2179071

X. Xing, B. Yoon, U. Landman, J.H. Parks, Structural evolution of Au nanoclusters: From planar to cage to tubular motifs, Phys. Rev. B 74 (2006) 165423. DOI: https://doi.org/10.1103/PhysRevB.74.165423

M. Johansson, D. Sundholm, J. Vaara, "Au32: A 24-carat golden fullerene," Angew. Chem., Int. Ed. 43 (2004) 2678. DOI: https://doi.org/10.1002/anie.200453986

M. Walter, J. Akola, O. Lopez-Acevedo, P. Jadzinsky, G. Calero, C. Ackerson, R. Whetten, H. Gronbeck, H. Hakkinen, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 9157. DOI: https://doi.org/10.1073/pnas.0801001105

Y. Gao, N. Shao, Y. Pei, Z. Chen, X. Zeng, Catalytic activities of subnanometer gold clusters (Au16-Au18, Au20, and Au27-Au35) for CO oxidation, ACS Nano 5 (2011) 7818 DOI: https://doi.org/10.1021/nn201817b

A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Ha1kkinen, R. N. Barnett, and Uzi Landman, When Gold Is Not Noble: Nanoscale Gold Catalysts, J. Phys. Chem. A 103 (1999) 9573 DOI: https://doi.org/10.1021/jp9935992

F. Remacle and E. Kryachko, Novel Features in 2D and 3D Neutral, Cationic, and Anionic Gold Clusters AuNZ ( 5 < N < 9, Z = 0, ± 1), arXiv:physics/0412077 (2005).

L. Ferrighi, B. Hammer, and G. K. Madsen, 2D− 3D transition for cationic and anionic gold clusters: a kinetic energy density functional study, J. Am. Chem. Soc. 131 (2009). 10605 DOI: https://doi.org/10.1021/ja903069x

M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, 2D-3D transition of gold cluster anions resolved, Phys. Rev. A 77 (2008) 053202. DOI: https://doi.org/10.1103/PhysRevA.77.053202

P. V. Nhat, N. T. Si, N. T. N. Hang, and M. T. Nguyen, The lowest-energy structure of the gold cluster Au 10: planar vs. nonplanar?, Phys. Chem. Chem. Phys. 24 (2022) 42 DOI: https://doi.org/10.1039/D1CP04440K

P. M. Petrar, M. B. Sárosi, and R. B. King, Au102+: A Tetrahedral Cluster Exhibiting Spherical Aromaticity, J. Phys. Chem. Lett. 3 (2012) 3335 DOI: https://doi.org/10.1021/jz3015748

E. Kryachko and F. Remacle, The magic gold cluster Au20, Int. J. Quantum Chem. 107 (2007) 2922. DOI: https://doi.org/10.1002/qua.21504

N. T. Lan et al., DFT investigation of Au9M2+ nanoclusters (M= Sc-Ni): The magnetic superatomic behavior of Au9Cr2+, Chem. Phys. Lett. 793 (2022) 139451. DOI: https://doi.org/10.1016/j.cplett.2022.139451

E. Janssens, "Electronic and geometric structure of transition metal doped silver and gold clusters", PhD Thesis, Katholieke Universiteit Leuven (2004).

A. Ghosh, O. F. Mohammed, and O. M. Bakr, Atomic-level doping of metal clusters, Acc. Chem. Res. 51 (2018) 3094 DOI: https://doi.org/10.1021/acs.accounts.8b00412

L. Pečinka, E. M. Peña-Méndez, J. E. Conde-González, and J. Havel, Laser ablation synthesis of metal-doped gold clusters from composites of gold nanoparticles with metal organic frameworks, Sci Rep. 11 (2021) 4656. DOI: https://doi.org/10.1038/s41598-021-83836-3

S. Neukermans, E. Janssens, H. Tanaka, R. Silverans, and P. Lievens, Element-and Size-Dependent Electron Delocalization in AuNX+ Clusters (X= S c, Ti, V, Cr, Mn, Fe, Co, Ni), Phys. Rev. Lett. 90 (2003) 033401. DOI: https://doi.org/10.1103/PhysRevLett.90.033401

X. Li, B. Kiran, L. F. Cui, and L. S. Wang, Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M = Ti, V, Cr), (in eng), Phys. Rev. Lett. 95 (2005) 253401. DOI: https://doi.org/10.1103/PhysRevLett.95.253401

C. Ehlert and I. P. Hamilton, Iron doped gold cluster nanomagnets: ab initio determination of barriers for demagnetization, Nanoscale Adv. 1 (2019) 1553. DOI: https://doi.org/10.1039/C8NA00359A

Q. Du et al., Structure evolution of transition metal-doped gold clusters M@Au12 (M = 3d-5d): across the periodic table, J. Phys. Chem. C 124 (13) (2020) pp. 7449-7457. DOI: https://doi.org/10.1021/acs.jpcc.9b11588

N. M. Tam, N. T. Mai, H. T. Pham, N. T. Cuong, and N. T. Tung, Ultimate Manipulation of Magnetic Moments in the Golden Tetrahedron Au20 with a Substitutional 3d Impurity, J. Phys. Chem. C 122 (2018) 16256. DOI: https://doi.org/10.1021/acs.jpcc.8b03378

N. M. Tam, N. T. Cuong, H. T. Pham, and N. T. Tung, Au19M (M=Cr, Mn, and Fe) as magnetic copies of the golden pyramid, Sci. Rep. 7 (2017) 16086. DOI: https://doi.org/10.1038/s41598-017-16412-3

M. Frisch et al., Gaussian 09 (Revision A02), Gaussian Inc. Wallingford CT, (2009).

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B) (1964) B864. DOI: https://doi.org/10.1103/PhysRev.136.B864

J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Au20: a tetrahedral cluster, Science 299 (5608) (2003) 864. DOI: https://doi.org/10.1126/science.1079879

N. Shao, W. Huang, L.-S. Wang, Q. Wu, and Z. Cheng, Structural Evolution of Medium-Sized Gold Clusters Aun– (n = 36, 37, 38): Appearance of Bulk-Like Face Centered Cubic Fragment, J. Phys. Chem. C 118 (2014) 6887 DOI: https://doi.org/10.1021/jp500582t

H. Hakkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai, and L.-S. Wang, On the electronic and atomic structures of small auN- (N = 4-14) clusters: a photoelectron spectroscopy and density-functional study, J. Phys. Chem. A 107 (2003) 6168 DOI: https://doi.org/10.1002/chin.200345006

W. Huang and L.-S. Wang, Au10−: isomerism and structure-dependent O2 reactivity, Phys. Chem.Chem. Phys. 11 (15) (2009) pp. 2663. DOI: https://doi.org/10.1039/b823159a

L. Ren and L. Cheng, Structural prediction of (Au20)N (N = 2–40) clusters and their building-up principle, Computational and Theoretical Chemistry, 984 (2012) 142. DOI: https://doi.org/10.1016/j.comptc.2012.01.024

H. T. Nguyen, N. T. Cuong, N. T. Lan, N. T. Tung, M. T. Nguyen, and N. M. Tam, First-row transition metal doped germanium clusters Ge16M: some remarkable superhalogens, RSC advances, 12 (21) (2022) 13487. DOI: https://doi.org/10.1039/D1RA08527A

Z. Ben-Xia, D. Dong, W. Ling, and Y. Ji-Xian, Density Functional Study on the Structural, Electronic, and Magnetic Properties of 3d Transition-Metal-Doped Au5 Clusters, J. Phys. Chem. A, 118 (2014) 4005. DOI: https://doi.org/10.1021/jp503391p

J. Reveles et al., Designer magnetic superatoms, Nature Chem. 1 (2009) 310. DOI: https://doi.org/10.1038/nchem.249

Downloads

Published

08-02-2023

How to Cite

[1]
N. T. Lan, N. T. Mai, N. V. Dang and N. T. Tung, DFT investigation of pyramidal Au\(_{9}\)M\(^{2+}\) and Au\(_{19}\)M (M = Sc-Ni): similarities and differences of structural evolution, electronic and magnetic properties, Comm. Phys. 33 (2023) 63. DOI: https://doi.org/10.15625/0868-3166/17431.

Issue

Section

Papers
Received 17-08-2022
Accepted 08-11-2022
Published 08-02-2023

Most read articles by the same author(s)