Heat Conductance Oscillations in Two Weakly Connected Charge Kondo Circuits

T. K. T. Nguyen, M. N. Kiselev
Author affiliations

Authors

  • T. K. T. Nguyen Institute of Physics, Vietnam Academy of Science and Technology
  • M. N. Kiselev The Abdus Salam International Centre for Theoretical Physics https://orcid.org/0000-0003-2542-3686

DOI:

https://doi.org/10.15625/0868-3166/17169

Keywords:

thermoelectric transport, thermal conductance, Kondo effect

Abstract

We revisit a model describing Seebeck effect on a weak link between two charge Kondo circuits, which has been proposed in the [Phys. Rev. B 97 (2018) 085403]. We calculate the thermoelectric coefficients in the perturbation theory assuming smallness of the reflection amplitudes of the quantum point contacts. We focus on the linear response equations for the heat conductance in three different scenarios as: Fermi liquid vs Fermi liquid, Fermi liquid vs non-Fermi liquid, non-Fermi liquid vs non-Fermi liquid. The oscillations of the heat conductance as a function of the gate voltage of each quantum dot are analysed in both Fermi liquid and non-Fermi liquid regimes. We discuss possible experimental realizations of the model to observe the signatures of the non-Fermi liquid behaviour in the heat conductance measurements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

V. Zlatic and R. Monnier, Modern Theory of Thermoelectricity, Oxford University Press, 2014. DOI: https://doi.org/10.1093/acprof:oso/9780198705413.001.0001

G. Benenti, G. Casati, K. Saito, and R. Whitney, Phys. Rep. 694 (2017) 1.

Y. M. Blanter and Y. V. Nazarov, Quantum Transport: Introduction to Nanoscience, Cambridge University Press, Cambridge, 2009.

J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Prog. Theor. Phys. 32 (1964) 37. DOI: https://doi.org/10.1143/PTP.32.37

A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, 1993. DOI: https://doi.org/10.1017/CBO9780511470752

P. Nozieres and A. Blandin, Kondo effect in real metals, J. Phys. France 41 (1980) 193. DOI: https://doi.org/10.1051/jphys:01980004103019300

K. Flensberg, Capacitance and conductance of mesoscopic systems connected by quantum point contacts, Phys. Rev. B 48 (1993) 11156. DOI: https://doi.org/10.1103/PhysRevB.48.11156

K. A. Matveev, Coulomb blockade at almost perfect transmission, Phys. Rev. B 51 (1995) 1743. DOI: https://doi.org/10.1103/PhysRevB.51.1743

A. Furusaki and K. A. Matveev, Theory of strong inelastic cotunneling, Phys. Rev. B 52 (1995) 16676. DOI: https://doi.org/10.1103/PhysRevB.52.16676

A. V. Andreev and K. A. Matveev, Coulomb blockade oscillations in the thermopower of open quantum dots, Phys. Rev. Lett. 86 (2001) 280; DOI: https://doi.org/10.1103/PhysRevLett.86.280

A. V. Andreev and K. A. Matveev, Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling, Phys. Rev. B 66 (2002) 045301. DOI: https://doi.org/10.1103/PhysRevB.66.045301

K. Le Hur and G. Seelig, Capacitance of a quantum dot from the channel-anisotropic two-channel Kondo model, Phys. Rev. B 65 (2002) 165338. DOI: https://doi.org/10.1103/PhysRevB.65.165338

T. K. T. Nguyen, M. N. Kiselev and V. E. Kravtsov, Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels, Phys. Rev. B 82 (2010) 113306. DOI: https://doi.org/10.1103/PhysRevB.82.113306

T. K. T. Nguyen and M. N. Kiselev, Thermoelectric transport through a quantum dot: Effects of asymmetry in Kondo channels, Phys. Rev. B 92 (2015) 045125.

T. K. T. Nguyen and M. N. Kiselev, Seebeck effect on a weak link between Fermi and non-Fermi liquids, Phys. Rev. B 97 (2018) 085403. DOI: https://doi.org/10.1103/PhysRevB.97.085403

T. K. T. Nguyen, M. N. Kiselev, Thermoelectric transport in a three-channel charge Kondo circuit, Phys. Rev. Lett. 125 (2020) 026801. DOI: https://doi.org/10.1103/PhysRevLett.125.026801

Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D. Parmentier, A. Cavanna and F. Pierre, Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states, Nature 526 (2015) 233. DOI: https://doi.org/10.1038/nature15384

Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon and F. Pierre, Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit, Science 360 (2018) 1315. DOI: https://doi.org/10.1126/science.aan5592

W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Cavanna, M. A. Kastner, A. K. Mitchell and D. Goldhaber-Gordon, Quantum simulation of an exotic quantum critical point in a two-site charge Kondo circuit, arXiv:2108.12691 [cond-mat.mes-hall].

C. W. J. Beenakker and A. A. M. Staring, Theory of the thermopower of a quantum dot, Phys. Rev. B 46 (1992) 9667. DOI: https://doi.org/10.1103/PhysRevB.46.9667

M. Turek and K. A. Matveev, Cotunneling thermopower of single electron transistors, Phys. Rev. B 65 (2002) 115332. DOI: https://doi.org/10.1103/PhysRevB.65.115332

A. A. M. Staring, L.W. Molenkamp, B.W. Alphenaar, H. van Houten, O. J. A. Buyk, M. A. A. Mabesoone, C.W. J. Beenakker and C. T. Foxon, Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett. 22 (1993) 57. DOI: https://doi.org/10.1209/0295-5075/22/1/011

A. S. Dzurak, C. G. Smith, C. H.W. Barnes, M. Pepper, L. Martin-Moreno, C. T. Liang, D. A. Ritchie and G. A. C. Jones, Thermoelectric signature of the excitation spectrum of a quantum dot, Phys. Rev. B 55 (1997) R10197(R). DOI: https://doi.org/10.1103/PhysRevB.55.R10197

R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev and L. W. Molenkamp, Thermopower of a Kondo spincorrelated quantum dot, Phys. Rev. Lett. 95 (2005) 176602. DOI: https://doi.org/10.1103/PhysRevLett.95.176602

R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg and D. Goldhaber-Gordon, Observation of the two-channel Kondo effect, Nature (London) 446 (2007) 167. DOI: https://doi.org/10.1038/nature05556

M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin and T. Koga, Low-dimensional thermoelectric materials, Phys. Solid State 41 (1999) 679. DOI: https://doi.org/10.1134/1.1130849

G. Benenti, G. Casati, K. Saito and R. S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Phys. Rep. 694 (2017) 1. DOI: https://doi.org/10.1016/j.physrep.2017.05.008

V. Zlatic, T. A. Costi, A. C. Hewson, and B. R. Coles, Thermoelectric power of concentrated Kondo systems, Phys. Rev. B 48 (1993) 16152(R). DOI: https://doi.org/10.1103/PhysRevB.48.16152

T.-S. Kim and S. Hershfield, Thermoelectric effects of an Aharonov-Bohm interferometer with an embedded quantum dot in the Kondo regime, Phys. Rev. B 67 (2003) 165313. DOI: https://doi.org/10.1103/PhysRevB.67.165313

M. G. Vavilov and A. D. Stone, Failure of the Wiedemann-Franz law in mesoscopic conductors, Phys. Rev. B 72 (2005) 205107. DOI: https://doi.org/10.1103/PhysRevB.72.205107

D. B. Karki and M. N. Kiselev, Nonlinear Seebeck effect of SU(N) Kondo impurity, Phys. Rev. B 100 (2019) 125426. DOI: https://doi.org/10.1103/PhysRevB.100.125426

D. B. Karki, Coulomb blockade oscillations of heat conductance in the charge Kondo regime, Phys. Rev. B 102 (2020) 245430. DOI: https://doi.org/10.1103/PhysRevB.102.245430

D. B. Karki, Wiedemann-Franz law in scattering theory revisited, Phys. Rev. B 102 (2020) 115423. DOI: https://doi.org/10.1103/PhysRevB.102.115423

A. I. Pavlov and M. N. Kiselev, Quantum thermal transport in the charged Sachdev-Ye-Kitaev model: Thermoelectric Coulomb blockade, Phys. Rev. B 103 (2021) L201107. DOI: https://doi.org/10.1103/PhysRevB.103.L201107

K. Yang and B. I. Halperin, Thermopower as a possible probe of non-Abelian quasiparticle statistics in fractional quantum Hall liquids, Phys. Rev. B 79 (2009) 115317. DOI: https://doi.org/10.1103/PhysRevB.79.115317

W. E. Chickering, J. P. Eisenstein, L. N. Pfeiffer and K. W. West, Thermoelectric response of fractional quantized Hall and reentrant insulating states in the N = 1 Landau level, Phys. Rev. B 87 (2013) 075302. DOI: https://doi.org/10.1103/PhysRevB.87.075302

C.-Y. Hou, K. Shtengel, G. Refael, and P. M. Goldbart, Ettingshausen effect due to Majorana modes, New J. Phys. 14 (2012) 105005. DOI: https://doi.org/10.1088/1367-2630/14/10/105005

Y. Kleeorin, H. Thierschmann, H. Buhmann, A. Georges, L. W. Molenkamp and Y. Meir, How to measure the entropy of a mesoscopic system via thermoelectric transport, Nat. Commun. 10 (2019) 5801. DOI: https://doi.org/10.1038/s41467-019-13630-3

I. L. Aleiner and L. I. Glazman, Mesoscopic charge quantization, Phys. Rev. B 57 (1998) 9608. DOI: https://doi.org/10.1103/PhysRevB.57.9608

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Phys. Rev. 37 (1931) 405 DOI: https://doi.org/10.1103/PhysRev.37.405

L. Onsager, Reciprocal Relations in Irreversible Processes. II., Phys. Rev. 38 (1931) 2265. DOI: https://doi.org/10.1103/PhysRev.38.2265

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, In: M. Abramowitz and I. A. Stegun, Eds., Dover Books on Advanced Mathematics, Dover Publications, New York, 1965. DOI: https://doi.org/10.1115/1.3625776

D. W. Hahn and M. N. Ozisik, Heat Conduction, 3rd Edition , Wiley Publisher, Hoboken, New Jersey, 2012. DOI: https://doi.org/10.1002/9781118411285

D. B. Karki and M. N. Kiselev, Thermoelectric transport through a SU(N) Kondo impurity, Phys. Rev. B 96 (2017) 121403(R). DOI: https://doi.org/10.1103/PhysRevB.96.121403

D. B. Karki, E. Boulat, and C. Mora, Two-sites quantum island in the quasi-ballistic regime, arXiv:2204.08549 [cond-mat.mes-hall].

Downloads

Published

22-09-2022

How to Cite

[1]
T. T. K. Nguyen and M. Kiselev, “Heat Conductance Oscillations in Two Weakly Connected Charge Kondo Circuits”, Comm. Phys., vol. 32, no. 4, p. 331, Sep. 2022.

Issue

Section

Papers

Funding data

Received 24-05-2022
Accepted 15-07-2022
Published 22-09-2022