Simple Design of Double-Layer Antireflection Coating for Er-Doped Glass Laser Application

Van Huy Mai, Chi Dung Duong, Hoang Hai Le, Linh Khuong Tran, Alexandre Jaffré, Emmanuel Blanc, Olivier Schneegans
Author affiliations

Authors

  • Van Huy Mai Le Quy Don Technical University
  • Chi Dung Duong Department of Optical Devices
  • Hoang Hai Le Department of Optical Devices
  • Linh Khuong Tran Department of Optical Devices, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi
  • Alexandre Jaffré Laboratoire Génie Électrique et Électronique de Paris (GeePs) - CNRS – CentraleSupélec
  • Emmanuel Blanc Laboratoire de Physique des 2 Infinis – Irène Joliot-Curie (IJCLab)
  • Olivier Schneegans Laboratoire Génie Électrique et Électronique de Paris (GeePs) - CNRS – CentraleSupélec

DOI:

https://doi.org/10.15625/0868-3166/17137

Keywords:

lasers; erbium-doped glass; antireflection coatings; thin films; refractive index

Abstract

In an Erbium-doped glass laser resonator, parasitic light oscillations (yielding a lowering of the output laser beam power) may be avoided by deposition of well-adapted antireflection coatings on the edges of the active glass medium. However, towards laser application, efficient double-layers are scarce in literature. Here, we propose a simple design of double-layer (total thickness < 490nm) composed of thin films of MgF2 and Al2O3, materials that are easy to deposit by electron beam evaporation. Such coating design allows a calculated reflectance to be lower than 0.01% in the considered 1530-1570nm Near-Infrared range.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

B. Denker and E. Shklovsky, Handbook of solid-state lasers: materials, systems and applications, Elsevier (Amsterdam), 2013.

R. Francini, F. Giovenale, U. Grassano, P. Laporta and S. Taccheo, Spectroscopy of Er and Er–Yb-doped phosphate glasses, Opt. Mater. 13 (2000) 417.

Z. Mierczyk, Selected Papers from International Conference on Optics and Optoelectronics’ 98, International Society for Optics and Photonics, 1999, 304.

Y.-L. Lu, Y.-Q. Lu and N.-B. Ming, Fluorescence and attenuation properties of Er3+-doped phosphate-glass fibers and efficient infrared-to-visible up-conversion, Appl. Phys. B. 62 (1996) 287.

W. Koechner, Solid-state laser engineering, Springer (New York), 2013.

T. Tolenis, L. Grineviˇci¯ut˙e, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys and A. Melninkaitis, Sculptured anti-reflection coatings for high power lasers, Opt. Mater. Express. 7 (2017) 1249.

M. Keshavarz Hedayati and M. Elbahri, Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review, Materials 9 (2016) 497.

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan and E. Van Stryland, Handbook of optics, Volume IV: Optical properties of materials, (New York City), 2009.

J. Dobrowolski, Advances in Optical Thin Films II, International Society for Optics and Photonics, 2005, 596303.

H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review, Energy Environ. Sci. 4 (2011) 3779.

A. H. Jareeze, Design and simulation antireflection coating for laser Nd:YAG (1064nm) wavelength and has multifrequency (532,355nm) on glass substrate, ANJS 11 (2008) 104.

https://www.rp-photonics.com/anti reflection coatings.html

https://www.edmundoptics.com/knowledge-center/application-notes/lasers/anti-reflection-coatings/.

Y. Wei, H. Liu, O. Sheng, Z. Liu, S. Chen and L. Yang, Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition, Appl. Opt. 50 (2011) 4720.

Q. Zhang, F. Pan, J. Luo, Q. Wu, Z. Wang and Y. Wei, Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition, J. Alloys Compd. 659 (2016) 288.

N. Uehara, R. Okuda and T. Shidara, Optical Interference Coatings, Optica Publishing Group, 2004, WA5.

H. V. Mai, A. Jaffr´e, K. M. Doan, T. D. Trinh and O. Schneegans, A new simple analytical method for a highly accurate determination of the optical parameters of a slab from transmittance data, Appl. Spectrosc. 76 (2022) 590.

E. Nichelatti, Complex refractive index of a slab from reflectance and transmittance: analytical solution, J. Opt. 4 (2002) 400.

C. Yin, M. Zhu, T. Zeng, J. Sun, R. Zhang, J. Zhao, L. Wang and J. Shao, Al2O3 anti-reflection coatings with graded-refractive index profile for laser applications, Opt. Mater. Express. 11 (2021) 875.

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkm¨uller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores and W. Ted Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride, Appl. Opt. 51 (2012) 6789.

R. Boidin, T. Halenkoviˇc, V. Nazabal, L. Beneˇs and P. Nˇemec, Pulsed laser deposited alumina thin films, Ceram. Int. 42 (2016) 1177.

H. V. Mai, D. C. Duong, H. H. Le, B. D. Bui, N. N. Phan, K. K. Doan, H. M. Nguyen, A. Jaffr´e and O. Schneegans, The 10th International Conference on Photonics and Applications, Publishing House for Science and Technology, 2018, 71.

Downloads

Published

15-09-2022

How to Cite

[1]
V. H. Mai, C. D. . Duong, H. H. . Le, L. K. . Tran, A. Jaffré, E. . Blanc and O. . Schneegans, Simple Design of Double-Layer Antireflection Coating for Er-Doped Glass Laser Application, Comm. Phys. 32 (2022) 353. DOI: https://doi.org/10.15625/0868-3166/17137.

Issue

Section

Papers
Received 16-05-2022
Accepted 28-07-2022
Published 15-09-2022